Share:
Share this content in WeChat
X
Clinical Article
The value of magnetic resonance image compilation and T2mapping sequence in the quantitative assessment of chronic supraspinatus tendonitis
XU Fenling  TIAN Zhaorong  TIAN Bo  GONG Rui  MA Fangfang  HU Jingbo  WANG Zhijun 

Cite this article as: XU F L, TIAN Z R, TIAN B, et al. The value of magnetic resonance image compilation and T2mapping sequence in the quantitative assessment of chronic supraspinatus tendonitis[J]. Chin J Magn Reson Imaging, 2024, 15(8): 158-165. DOI:10.12015/issn.1674-8034.2024.08.024.


[Abstract] Objective To explore the diagnostic value of magnetic resonance image compilation (MAGiC) and T2mapping sequences in chronic supraspinatus tendinitis, and compare the image quality of the two in supraspinatus tendon scanning, and the T2 values of the two sequences in chronic supraspinatus tendonitis. Correlation of different subregions in supraspinatus tendonitis.Materials and Methods A retrospective collection of 30 patients with chronic supraspinatus tendonitis (tendinitis group) and 26 healthy persons undergoing physical examination (control group) in our hospital from October 2022 to January 2024, and all underwent conventional MRI, T2mapping sequence and MAGiC sequence scanning. Two radiologists divided the supraspinatus tendon into lateral, middle, and medial subregions according to its course, and measured the T2 values of different subregions on the MAGiC sequence and T2mapping sequence. Compare the image quality of the first echo image of the T2mapping sequence and MAGiC T2WI, and measure the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The Mann-Whitney U test was used to analyze the differences in quantitative parameters between the tendonitis group and the control group in different subregions as well as the image quality of the two sequences. Draw the receiver operating characteristic (ROC) curve and calculate the area under the curve (AUC) to evaluate its diagnostic performance for tendonitis. Pearson correlation analysis was used to evaluate the correlation between T2 values in different subregions measured by T2mapping sequence and MAGiC sequence.Results There is no statistically significant difference in the subjective score of the first echo image quality between MAGiC T2WI and T2mapping sequences reconstructed images (Z=-1.535, P>0.05); the CNR of MAGiC T2WI images [15.45 (12.76, 20.46)] is higher than that of T2mapping sequences the first echo image [9.94 (8.74, 12.23)], the difference is statistically significant (Z=-2.473, P<0.001), while the SNR of the MAGiC T2WI image [2.49 (2.16, 2.71)] was lower than the first in the T2mapping sequence echo image [5.82 (5.16, 7.44)], the difference was statistically significant (Z=-0.609, P<0.001); the T2 values of MAGiC sequence and T2mapping sequence were both higher in the lateral subregion and medial subregion of the tendinitis group. In the control group, the difference was statistically significant (P<0.05); the T1 value of the MAGiC sequence in the lateral subregion of the tendonitis group was higher than that in the control group, and the difference was statistically significant (P<0.05). The AUC of MAGiC sequence T1 and T2 values in diagnosing supraspinatus tendinitis in the lateral sub-region are 0.663 and 0.799 respectively, and the AUC of T2 value in diagnosing supraspinatus tendinitis in the medial sub-region is 0.762; the T2mapping sequence T2 value in the lateral sub-region, the AUCs for diagnosing supraspinatus tendonitis in the medial subregion were 0.822 and 0.711 respectively. The MAGiC sequence T2 value and T2mapping T2 value were positively correlated in the lateral subregion, middle subregion, and medial subregion of the supraspinatus tendon (correlation coefficients were 0.736, 0.437, 0.464 respectively).Conclusions The T1 and T2 values of the MAGiC quantitative map and T2mapping T2 values can effectively assess the heterogeneity of the internal components of the supraspinatus tendon, reflect the differences between the internal components of the normal tendon and the regional differences of the tendon itself, and provide an objective basis for the quantification of the supraspinatus tendon degeneration in clinical practice.
[Keywords] supraspinatus tendonitis;magnetic resonance imaging;magnetic resonance image compilation;T2mapping;signal to noise ratio;contrast to noise ratio;quantitative evaluation

XU Fenling1, 2   TIAN Zhaorong2   TIAN Bo2   GONG Rui2   MA Fangfang1, 2   HU Jingbo1, 2   WANG Zhijun2*  

1 The First Clinical Medical College of Ningxia Medical University, Yinchuan 750001, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750001,China

Corresponding author: WANG Z J, E-mail: wangzhijun2056@163.com

Conflicts of interest   None.

Received  2024-03-14
Accepted  2024-07-30
DOI: 10.12015/issn.1674-8034.2024.08.024
Cite this article as: XU F L, TIAN Z R, TIAN B, et al. The value of magnetic resonance image compilation and T2mapping sequence in the quantitative assessment of chronic supraspinatus tendonitis[J]. Chin J Magn Reson Imaging, 2024, 15(8): 158-165. DOI:10.12015/issn.1674-8034.2024.08.024.

[1]
KIM D H, BAE K C, CHOI J H, et al. Chronicity is associated with the glenohumeral synovitis in patients with a rotator cuff tear[J]. J Orthop Res, 2021, 39(10): 2226-2233. DOI: 10.1002/jor.24941.
[2]
LOCKARD C A, NOLTE P C, GAWRONSKI K M B, et al. Quantitative T2 mapping of the glenohumeral joint cartilage in asymptomatic shoulders and shoulders with increasing severity of rotator cuff pathology[J/OL]. Eur J Radiol Open, 2021, 8: 100329[2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/33644264/. DOI: 10.1016/j.ejro.2021.100329.
[3]
MILLER R M, THUNES J, MAITI S, et al. Effects of tendon degeneration on predictions of supraspinatus tear propagation[J]. Ann Biomed Eng, 2019, 47(1): 154-161. DOI: 10.1007/s10439-018-02132-w.
[4]
XING Q J, ZHAO D F, DAI W W, et al. Effect of partial-thickness tear of supraspinatus on the distribution of tendon stress: finite element analysis[J]. J Pract Orthop, 2018, 24(6): 519-522.
[5]
ZOGA A C, KAMEL S I, HYNES J P, et al. The evolving roles of MRI and ultrasound in first-line imaging of rotator cuff injuries[J]. AJR Am J Roentgenol, 2021, 217(6): 1390-1400. DOI: 10.2214/AJR.21.25606.
[6]
SARAGAGLIA D, BARTHOMEUF C, BANIHACHEMI J J. Deciphering acute shoulder trauma with normal initial X-ray: contributions of ultrasonography and MRI[J/OL]. Orthop Traumatol Surg Res, 2021, 107(5): 102965 [2023-09-30]. https://pubmed.ncbi.nlm.nih.gov/34033918/. DOI: 10.1016/j.otsr.2021.102965.
[7]
LONGO U G, MAZZOLA A, MAGRÌ F, et al. Histological, radiological and clinical analysis of the supraspinatus tendon and muscle in rotator cuff tears[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 127 [2024-03-30]. https://pubmed.ncbi.nlm.nih.gov/36797741/. DOI: 10.1186/s12891-023-06237-9.
[8]
ZELLERS J A, EDALATI M, EEKHOFF J D, et al. Quantative MRI predicts tendon mechanical behavior, collagen composition, and organization[J]. J Orthop Res, 2023, 41(10): 2329-2338. DOI: 10.1002/jor.25471.
[9]
ECE B, YIGIT H, ERGUN E, et al. Quantitative analysis of supraspinatus tendon pathologies via T2/T2* mapping techniques with 1.5 T MRI[J/OL]. Diagnostics, 2023, 13(15): 2534 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/37568898/. DOI: 10.3390/diagnostics13152534.
[10]
CUI F, WANG C, WANG Y, et al. Basic principle and clinical research progress of MAGiC technology[J]. J Clin Radiol, 2021, 40(12): 2434-2437. DOI: 10.13437/j.cnki.jcr.2021.12.039.
[11]
CHEN S, OUYANG H. The application value of synthetic MRI in diagnosis[J]. Chin J Magn Reson Imag, 2020, 11(9): 833-836. DOI: 10.12015/issn.1674-8034.2020.09.027.
[12]
VASISHTA A, KELKAR A, JOSHI P, et al. The value of sonoelastography in the diagnosis of supraspinatus tendinopathy-a comparison study[J/OL]. Br J Radiol, 2019, 92(1095): 20180951 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/30689398/. DOI: 10.1259/bjr.20180951.
[13]
JAIN N B, COLLINS J, NEWMAN J S, et al. Reliability of magnetic resonance imaging assessment of rotator cuff: the ROW study[J]. PM R, 2015, 7(3): 245-254. DOI: 10.1016/j.pmrj.2014.08.949.
[14]
REDDY P K, DEY J, JOSHI Y S. Effect of ultrasound therapy with cryokinetics versus ultrasound therapy with soft tissue massage (deep friction massage) in acute supraspinatus tendinitis - A comparative study[J]. Int J Health Sci Res, 2021, 11(7): 249-256. DOI: 10.52403/ijhsr.20210734.
[15]
ANZ A W, LUCAS E P, FITZCHARLES E K, et al. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions[J]. Eur J Radiol, 2014, 83(5): 801-805. DOI: 10.1016/j.ejrad.2014.02.002.
[16]
STERN N, RADUNSKY D, BLUMENFELD-KATZIR T, et al. Mapping of magnetic resonance imaging's transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising[J/OL]. NMR Biomed, 2022, 35(12): e4807 [2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/35899528/. DOI: 10.1002/nbm.4807.
[17]
ZHAN Y Y, JIANG Y P, ZHANG K, et al. Feasibility study on application of MAGiC sequence in sacroiliac joint of young volunteers[J]. Chin J Magn Reson Imag, 2020, 11(7): 568-572. DOI: 10.12015/issn.1674-8034.2020.07.018.
[18]
CAO J T, TU H J, QIAN P K, et al. Image Quality Analysis of Rotator Cuff lmaging by 3D Multi-echo Recalled Gradient Echo Sequence on 3.0 T MRI[J]. Chin Comput Med Imag, 2023, 29(04): 405-411. DOI: 10.19627/j.cnki.cn31-1700/th.2023.04.007.
[19]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577.
[20]
PARK S, KWACK K S, LEE Y J, et al. Initial experience with synthetic MRI of the knee at 3T: comparison with conventionalT1 imagingTweighted2 mapping[J/OL]. Br J Radiol, 2017, 90(1080): 20170350 [2024-03-15]. https://pubmed.ncbi.nlm.nih.gov/28934866/. DOI: 10.1259/bjr.20170350.
[21]
ZHU L H, LU W H, WANG F N, et al. Study of T2 mapping in quantifying and discriminating uterine lesions under different magnetic field strengths: 1.5vsT. 3.0T[J/OL]. BMC Med Imaging, 2023, 23(1): 1 [2024-02-24]. https://pubmed.ncbi.nlm.nih.gov/36600192/. DOI: 10.1186/s12880-022-00960-w.
[22]
ZHAO H Y. Characteristic analysis of T2 value and degeneration distribution of knee cartilage based on T2 mapping quantitative technique[D].Shenyang: Shenyang Medical College, 2022.
[23]
KIM B R, YOO H J, CHAE H D, et al. Fat-suppressed T2 mapping of human knee femoral articular cartilage: comparison with conventional T2 mapping[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 662 [2024-01-13]. https://pubmed.ncbi.nlm.nih.gov/34372797/. DOI: 10.1186/s12891-021-04542-9.
[24]
LUO M Q, LI H W, XIANG H C, et al. 3.0T MR T1ρ and T2 mapping for evaluating articular cartilage degeneration of medial femoral condyle in rabbits[J]. Chin J Med lmaging Technol, 2022, 38(10): 1446-1451. DOI: 10.13929/j.issn.1003-3289.2022.10.002.
[25]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/36575488/. DOI: 10.1186/s12891-022-06040-y.
[26]
XIE Y X, LIU S H, QIAO Y, et al. Quantitative T2 mapping-based tendon healing is related to the clinical outcomes during the first year after arthroscopic rotator cuff repair[J]. Knee Surg Sports Traumatol Arthrosc, 2021, 29(1): 127-135. DOI: 10.1007/s00167-019-05811-w.
[27]
JIANG Y P, LI W J, ZHENG J, et al. Magnetic resonance image compilation sequence to quantitatively detect active sacroiliitis with axial spondyloarthritis[J]. Quant Imaging Med Surg, 2022, 12(7): 3666-3678. DOI: 10.21037/qims-21-972.
[28]
BIAN W J. Preliminary study on quantitative evaluation value of SyMRI and T2 mapping in discoid meniscus and its injury[D].Taiyuan: Shanxi Medical University, 2021.
[29]
LEE S H, LEE Y H, SONG H T, et al. Quantitative T2 mapping of knee cartilage: comparison between the synthetic MR imaging and the CPMG sequence[J]. Magn Reson Med Sci, 2018, 17(4): 344-349. DOI: 10.2463/mrms.tn.2017-0121.
[30]
JUNG Y, GHO S M, BACK S N, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J/OL]. Br J Radiol, 2019, 92(1093): 20180479 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/30215550/. DOI: 10.1259/bjr.20180479.
[31]
NI Y B, TIAN Z R, YANG J P, et al. Magnetic resonance image compilation in the assessment of chronic supraspinatus tendinitis[J]. Chin J Magn Reson Imag, 2022, 13(9): 53-57, 68. DOI: 10.12015/issn.1674-8034.2022.09.010.
[32]
DING B P, HU D C, SHI P P, et al. Clinical value of MR integrated sequence in the diagnosis of chronic supraspinatus tendinitis[J]. Zhejiang J Trauma Surg, 2023, 28(7): 1384-1386. DOI: 10.3969/j.issn.1009-7147.2023.07.057.
[33]
PUNTMANN V O, PEKER E, CHANDRASHEKHAR Y, et al. T1 mapping in characterizing myocardial disease: a comprehensive review[J]. Circ Res, 2016, 119(2): 277-299. DOI: 10.1161/CIRCRESAHA.116.307974.
[34]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[35]
MCNISH R, LOHSE K, PRUTHI S, et al. Achilles tendon assessment on quantitative MRI: sources of variability and relationships to tendinopathy[J/OL]. Scand J Med Sci Sports, 2024, 34(5): e14650 [2023-08-11]. https://pubmed.ncbi.nlm.nih.gov/38712745/. DOI: 10.1111/sms.14650.
[36]
KRÄMER M, MAGGIONI M B, BRISSON N M, et al. T1 and T2* mapping of the human quadriceps and patellar tendons using ultra-short echo-time (UTE) imaging and bivariate relaxation parameter-based volumetric visualization[J]. Magn Reson Imaging, 2019, 63: 29-36. DOI: 10.1016/j.mri.2019.07.015.
[37]
GIULIANO F D, MINOSSE S, PICCHI E, et al. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls[J]. MAGMA, 2020, 33(4): 549-557. DOI: 10.1007/s10334-019-00804-9.
[38]
ZHANG S C, JU W, CHEN X Y, et al. Hierarchical ultrastructure: an overview of what is known about tendons and future perspective for tendon engineering[J]. Bioact Mater, 2022, 8: 124-139. DOI: 10.1016/j.bioactmat.2021.06.007.
[39]
TIAN Z R, ZHANG L P, TIAN B, et al. Quantitative evaluation of sacroiliac arthritis activity in ankylosing spondylitis based on magnetic resonance image compilation sequences[J]. Chin J Magn Reson Imag, 2023, 14(12): 78-84. DOI: 10.12015/issn.1674-8034.2023.12.013.

PREV T2WI-based radiomics for discriminating between ovarian adult-type granulosa cell tumor and ovarian fibroma-thecoma with high-signal intensity on DWI
NEXT Comparative use of artificial intelligence-assisted compressed sensing and parallel imaging for shoulder magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn