Share:
Share this content in WeChat
X
Technical Article
Comparative use of artificial intelligence-assisted compressed sensing and parallel imaging for shoulder magnetic resonance imaging
YANG Zecheng  ZHAN Yi  SHI Nannan  SHANG Ai  SHAN Fei  SHEN Jie 

Cite this article as: YANG Z C, ZHAN Y, SHI N N, et al. Comparative use of artificial intelligence-assisted compressed sensing and parallel imaging for shoulder magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(8): 166-171. DOI:10.12015/issn.1674-8034.2024.08.025.


[Abstract] Objective By comparing with parallel imaging (PI), to explore the impact of artificial intelligence-assisted compressed sensing (ACS) technology on the scanning time and image quality of shoulder joint MRI, and optimizes the scanning scheme.Materials and Methods A total of 70 patients who underwent shoulder MRI in our hospital from November 2023 to February 2024 were prospectively enrolled. The scanning sequences used fast spin echo including oblique coronal T1-weighted (OCor T1WI), oblique coronal T2-weighted with fat saturation (OCor T2WI-fs), oblique sagittal proton density (PD)-weighted with fat saturation (OSag PDWI-fs), and transverse PD-weighted with fat saturation (Tra PDWI-fs), respectively, using two accelerated acquisition technologies: ACS and PI. Compare the scanning time of two technologies. Measure the signal intensity and background standard deviation of the supraspinatus muscle and humeral head, and calculate the signal-to-noise ratio (SNR). Use the Likert scale to rate image quality.Results Compared to PI, using ACS reduced scanning time by 33.5%. The images obtained using ACS have few artifacts and low noise. The subjective image quality scores are higher than those obtained using PI, and the differences are statistically significant (all P<0.05). The SNR of images using ACS in OCor T1WI, OCor T2WI-fs, and Tra PDWI-fs sequences were higher than those using PI in the supraspinatus muscle and humeral head, and the differences were statistically significant (all P<0.001). The SNR of the supraspinatus muscle in the OSag PDWI-fs sequence using ACS was not significantly different from that of PI (P>0.05), while the SNR of the humeral head in the images obtained using ACS was higher than that of PI, and the difference was statistically significant (all P<0.001).Conclusions Compared with PI, using ACS in shoulder MRI can achieve a more efficient and stable rapid imaging, improve image quality, shorten scanning time, and increase patient tolerance, which has clinical application value.
[Keywords] artificial intelligence;compressed sensing;parallel imaging;magnetic resonance imaging;shoulder

YANG Zecheng   ZHAN Yi   SHI Nannan   SHANG Ai   SHAN Fei   SHEN Jie*  

Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China

Corresponding author: SHEN J, E-mail: shenjie@shphc.org.cn

Conflicts of interest   None.

Received  2024-04-26
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.08.025
Cite this article as: YANG Z C, ZHAN Y, SHI N N, et al. Comparative use of artificial intelligence-assisted compressed sensing and parallel imaging for shoulder magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(8): 166-171. DOI:10.12015/issn.1674-8034.2024.08.025.

[1]
Osteoporosis Committee of World Federation of Chinese Medicine Societies, Longhua Hospital Affiliated to Shanghai University of Chinese Medicine, China-Japan Friendship Hospital, et al. Expert consensus on the diagnosis and treatment of periarthritis of the shoulder with integrated traditional Chinese and western medicine[J]. World Chin Med, 2023, 18(7): 911-917. DOI: 10.3969/j.issn.1673-7202.2023.07.004.
[2]
HERRMANN J, FENG Y S, GASSENMAIER S, et al. Fast 5-minute shoulder MRI protocol with accelerated TSE-sequences and deep learning image reconstruction for the assessment of shoulder pain at 1.5 and 3 Tesla[J/OL]. Eur J Radiol Open, 2024, 12: 100557 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38495213/. DOI: 10.1016/j.ejro.2024.100557.
[3]
GOWDA C S, MIRZA K, GALAGALI D A. Rotator cuff tears: correlation between clinical examination, magnetic resonance imaging and arthroscopy[J/OL]. Cureus, 2024, 16(3): e56065 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38618461/. DOI: 10.7759/cureus.56065.
[4]
WU H X, ZUO Z J, LI Y C, et al. Anatomic characteristics of shoulder based on MRI accurately predict incomplete rotator cuff injuries in patients: relevance for predictive, preventive, and personalized healthcare strategies[J]. EPMA J, 2023, 14(3): 553-570. DOI: 10.1007/s13167-023-00333-5.
[5]
FEUERRIEGEL G C, WEISS K, VAN A T, et al. Deep-learning-based image quality enhancement of CT-like MR imaging in patients with suspected traumatic shoulder injury[J/OL]. Eur J Radiol, 2024, 170: 111246 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38056345/. DOI: 10.1016/j.ejrad.2023.111246.
[6]
SNEAG D B, ABEL F, POTTER H G, et al. MRI advancements in musculoskeletal clinical and research practice[J/OL]. Radiology, 2023, 308(2): e230531 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37581501/. DOI: 10.1148/radiol.230531.
[7]
LI Z H, LU Y. Magnetic resonance imaging and diagnosis of rotator cuff injury[J]. Chin J Clin, 2023, 51(5): 522-524. DOI: 10.3969/j.issn.2095-8552.2023.05.004.
[8]
ALAIA E F, SUBHAS N. Shoulder MR imaging and MR arthrography techniques: new advances[J]. Magn Reson Imaging Clin N Am, 2020, 28(2): 153-163. DOI: 10.1016/j.mric.2019.12.001.
[9]
CAO J J, LIU N, ZHONG M M, et al. Application of artificial intelligence-assisted compressed sensing technology in brain 3D T2-FLAIR sequence acquisition and evaluation of white matter hyperintensity[J]. Chin J Magn Reson Imag, 2024, 15(2): 135-139, 146. DOI: 10.12015/issn.1674-8034.2024.02.020.
[10]
KANIEWSKA M, DEININGER-CZERMAK E, GETZMANN J M, et al. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time[J]. Eur Radiol, 2023, 33(3): 1513-1525. DOI: 10.1007/s00330-022-09151-1.
[11]
OBAMA Y, OHNO Y, YAMAMOTO K, et al. MR imaging for shoulder diseases: effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging[J/OL]. Magn Reson Imaging, 2022, 94: 56-63 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/35934207/. DOI: 10.1016/j.mri.2022.08.004.
[12]
LIU H B, DENG D L, ZENG W L, et al. AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality[J]. Eur Radiol, 2023, 33(11): 7686-7696. DOI: 10.1007/s00330-023-09742-6.
[13]
SUI H, GONG Y, LIU L, et al. Comparison of artificial intelligence-assisted compressed sensing (ACS) and routine two-dimensional sequences on lumbar spine imaging[J/OL]. J Pain Res, 2023, 16: 257-267 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/36744117/. DOI: 10.2147/JPR.S388219.
[14]
CHEN X Y, ZHA F X, QIN X F, et al. Feasibility study of ACS technique in axial magnetic resonance imaging of shoulder joint[J]. Radiol Pract, 2023, 38(11): 1458-1461. DOI: 10.13609/j.cnki.1000-0313.2023.11.016.
[15]
LIU J, LI W, LI Z Y, et al. Magnetic resonance shoulder imaging using deep learning-based algorithm[J]. Eur Radiol, 2023, 33(7): 4864-4874. DOI: 10.1007/s00330-023-09470-x.
[16]
LUIME J J, KOES B W, HENDRIKSEN I J, et al. Prevalence and incidence of shoulder pain in the general population; a systematic review[J]. Scand J Rheumatol, 2004, 33(2): 73-81. DOI: 10.1080/03009740310004667.
[17]
FEUERRIEGEL G C, WEISS K, KRONTHALER S, et al. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain[J]. Eur Radiol, 2023, 33(7): 4875-4884. DOI: 10.1007/s00330-023-09472-9.
[18]
GOES P C K, PATHRIA M N. Radiographic/MR imaging correlation of the shoulder[J]. Magn Reson Imaging Clin N Am, 2019, 27(4): 575-585. DOI: 10.1016/j.mric.2019.07.005.
[19]
DRATSCH T, SIEDEK F, ZÄSKE C, et al. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers[J/OL]. Eur Radiol Exp, 2023, 7(1): 66 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37880546/. DOI: 10.1186/s41747-023-00377-2.
[20]
KOHLI A, PILKINTON D T, XI Y, et al. Image quality improvement and motion degradation reduction in shoulder MR imaging: comparison of BLADE and rectilinear techniques at 3-Tesla scanning[J]. Skeletal Radiol, 2022, 51(12): 2291-2297. DOI: 10.1007/s00256-022-04085-7.
[21]
SHIRAISHI K, NAKAURA T, UETANI H, et al. Combination use of compressed sensing and deep learning for shoulder magnetic resonance imaging with various sequences[J]. J Comput Assist Tomogr, 2023, 47(2): 277-283. DOI: 10.1097/RCT.0000000000001418.
[22]
LIAO S, MO Z H, ZENG M S, et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction[J/OL]. Cell Rep Med, 2023, 4(7): 101119 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37467726/. DOI: 10.1016/j.xcrm.2023.101119.
[23]
YOON M A, GOLD G E, CHAUDHARI A S. Accelerated musculoskeletal magnetic resonance imaging[J/OL]. J Magn Reson Imaging, 2023 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38156716/. DOI: 10.1002/jmri.29205.
[24]
YUAN C, ZHANG Y K, CAO J J, et al. Optimization of artificial intelligence-assisted compressed sensing sequences for cerebral and carotid 3D-TOF-MRA[J]. Chin J Magn Reson Imag, 2024, 15(4): 139-144, 152. DOI: 10.12015/issn.1674-8034.2024.04.022.
[25]
SINGH D, MONGA A, DE MOURA H L, et al. Emerging trends in fast MRI using deep-learning reconstruction on undersampled k-space data: a systematic review[J/OL]. Bioengineering, 2023, 10(9): 1012 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37760114/. DOI: 10.3390/bioengineering10091012.
[26]
WANG S S, CAO G H, WANG Y, et al. Review and prospect: artificial intelligence in advanced medical imaging[J/OL]. Front Radiol, 2021, 1: 781868 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37492170/. DOI: 10.3389/fradi.2021.781868.
[27]
PAN K, LIU Q Q, TANG L L, et al. Study on acceleration efficiency and image quality of artificial intelligence compressed sensing and compressed sensing in knee MRI[J]. Chin J Magn Reson Imag, 2022, 13(5): 94-98. DOI: 10.12015/issn.1674-8034.2022.05.017.
[28]
NI M, HE M, YANG Y X, et al. Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective[J]. Eur Radiol, 2024, 34(5): 3046-3058. DOI: 10.1007/s00330-023-10368-x.
[29]
ZHAO Q, XU J J, YANG Y X, et al. AI-assisted accelerated MRI of the ankle: clinical practice assessment[J/OL]. Eur Radiol Exp, 2023, 7(1): 62 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37857868/. DOI: 10.1186/s41747-023-00374-5.
[30]
ZHONG M M, CAO J J, AN Q, et al. Impact of AI-assisted compressed sensing on quality and phase value of nuclei of brain susceptibility weighted imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 91-97. DOI: 10.12015/issn.1674-8034.2023.12.015.
[31]
LI S, WANG X C. Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 198-202. DOI: 10.12015/issn.1674-8034.2023.12.036.
[32]
WANG Q Z, ZHAO W L, XING X Y, et al. Feasibility of AI-assisted compressed sensing protocols in knee MR imaging: a prospective multi-reader study[J]. Eur Radiol, 2023, 33(12): 8585-8596. DOI: 10.1007/s00330-023-09823-6.
[33]
LIU K, XI B, SUN H T, et al. The clinical feasibility of artificial intelligence-assisted compressed sensing single-shot fluid-attenuated inversion recovery (ACS-SS-FLAIR) for evaluation of uncooperative patients with brain diseases: comparison with the conventional T2-FLAIR with parallel imaging[J]. Acta Radiol, 2023, 64(5): 1943-1949. DOI: 10.1177/02841851221139125.
[34]
ZHAO Y J, PENG C D, WANG S F, et al. The feasibility investigation of AI-assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology[J/OL]. BMC Med Imaging, 2022, 22(1): 119 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/35787673/. DOI: 10.1186/s12880-022-00842-1.
[35]
TANG H, PENG C D, ZHAO Y J, et al. An applicability study of rapid artificial intelligence-assisted compressed sensing (ACS) in anal fistula magnetic resonance imaging[J/OL]. Heliyon, 2024, 10(1): e22817 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38169794/. DOI: 10.1016/j.heliyon.2023.e22817.

PREV The value of magnetic resonance image compilation and T2mapping sequence in the quantitative assessment of chronic supraspinatus tendonitis
NEXT Quantitative evaluation of liver fibrosis by MRE and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in a rabbit model
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn