Share:
Share this content in WeChat
X
Original Article
Quantitative evaluation of liver fibrosis by MRE and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in a rabbit model
ZHANG Hao  ZOU Liqiu  ZHONG Wenxin  MAI Xiaofei  SHI Qiao 

Cite this article as: ZHANG H, ZOU L Q, ZHONG W X, et al. Quantitative evaluation of liver fibrosis by MRE and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in a rabbit model[J]. Chin J Magn Reson Imaging, 2024, 15(8): 172-178. DOI:10.12015/issn.1674-8034.2024.08.026.


[Abstract] Objective To compare the accuracy of MR elastography (MRE) and Gd-EOB-DTPA-enhanced T1 mapping in the quantitative evaluation of liver fibrosis (LF) staging.Materials and Methods One hundred and twenty rabbits were randomly divided into control group (n=20), which were injected subcutaneously with normal saline solution, and LF group (n=100), which were received 50% (carbon tetrachloride) CCl4 oil solution. The control group (n=5) and LF group (n=25) underwent MRI axial scan, T1WI, MRE, Gd-EOB-DTPA-enhanced T1 mapping at the end of the 4th, 5th, 6th, 15th week. The pathological LF staging was based on Scheuer staging system. The quantitative parameter included liver stiffness (LS), pre- and post-contrast T1 values of the liver (T1native and T120min), the reduction rate of T1 relaxation time (ΔT120min) and the increase in T1 relaxation rate (ΔR120min), were compared the differences by one-way ANOVA analysis. Spearman correlation coefficients, Receiver operating characteristic (ROC) analysis was used respectively to determine the correlation and diagnostic performance between quantitative parameters and pathological LF staging.Results A total of 96 rabbits were included in F0 (n=15), F1 (n=22), F2 (n=22), F3 (n=18) and F4 (n=19). LS, T1native, T120min, ΔT120min, ΔR120min showed significant differences among all LF staging (P<0.05). There were correlation between LS, T1native, T120min, ΔT120min, ΔR120min and LF stage (r=0.935, 0.559, 0.770, -0.418 -0.686, P<0.001), respectively. LS exhibited the largest area under the curve (AUC), which were 0.988, 0.979, 1.000, 0.995 for F0 vs. F1~F4, F0 vs. F1~F2, F0 vs. F3~F4, F1~F2 vs. F3~F4, respectively. Secondly, the AUC of T120min were 0.914, 0.852, 0.987, and 0.896, respectively.Conclusions In the early quantitative evaluation of LF staging, MRE and Gd-EOB-DTPA enhanced T1 mapping had demonstrated significant diagnostic value, with MRE outperforming Gd-EOB-DTPA enhanced T1 mapping.
[Keywords] liver fibrosis;magnetic resonance elastography;liver stiffness;Gd-EOB-DTPA;T1 mapping

ZHANG Hao1   ZOU Liqiu1   ZHONG Wenxin1   MAI Xiaofei1   SHI Qiao2*  

1 Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen 518052, China

2 Department of Radiology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518100, China

Corresponding author: SHI Q, E-mail: docshi@126.com

Conflicts of interest   None.

Received  2024-03-07
Accepted  2024-07-30
DOI: 10.12015/issn.1674-8034.2024.08.026
Cite this article as: ZHANG H, ZOU L Q, ZHONG W X, et al. Quantitative evaluation of liver fibrosis by MRE and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in a rabbit model[J]. Chin J Magn Reson Imaging, 2024, 15(8): 172-178. DOI:10.12015/issn.1674-8034.2024.08.026.

[1]
ZERUNIAN M, PUCCIARELLI F, MASCI B, et al. Updates on quantitative MRI of diffuse liver disease: a narrative review[J/OL]. Biomed Res Int, 2022, 2022: 1147111 [2023-10-23]. https://pubmed.ncbi.nlm.nih.gov/36619303/. DOI: 10.1155/2022/1147111.
[2]
WELLE C L, OLSON M C, REEDER S B, et al. Magnetic resonance imaging of liver fibrosis, fat, and iron[J]. Radiol Clin North Am, 2022, 60(5): 705-716. DOI: 10.1016/j.rcl.2022.04.003.
[3]
FOWLER K J, VENKATESH S K, OBUCHOWSKI N, et al. Repeatability of MRI biomarkers in nonalcoholic fatty liver disease: the NIMBLE consortium[J/OL]. Radiology, 2023, 309(1): e231092 [2023-10-26]. https://pubmed.ncbi.nlm.nih.gov/37815451/. DOI: 10.1148/radiol.231092.
[4]
NOGAMI A, YONEDA M, IWAKI M, et al. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future[J]. Clin Mol Hepatol, 2023, 29(Suppl): S123-S135. DOI: 10.3350/cmh.2022.0357.
[5]
VENKATESH S K, TORBENSON M S. Liver fibrosis quantification[J]. Abdom Radiol (NY), 2022, 47(3): 1032-1052. DOI: 10.1007/s00261-021-03396-y.
[6]
ZHANG C Y, LIU S, YANG M. Treatment of liver fibrosis: past, current, and future[J]. World J Hepatol, 2023, 15(6): 755-774. DOI: 10.4254/wjh.v15.i6.755.
[7]
OZTURK A, OLSON M C, SAMIR A E, et al. Liver fibrosis assessment: MR and US elastography[J]. Abdom Radiol (NY), 2022, 47(9): 3037-3050. DOI: 10.1007/s00261-021-03269-4.
[8]
YAMADA A, KAMAGATA K, HIRATA K, et al. Clinical applications of artificial intelligence in liver imaging[J]. Radiol Med, 2023, 128(6): 655-667. DOI: 10.1007/s11547-023-01638-1.
[9]
TIPIRNENI-SAJJA A, BRASHER S, SHRESTHA U, et al. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms[J]. MAGMA, 2023, 36(4): 529-551. DOI: 10.1007/s10334-022-01053-z.
[10]
ICHIKAWA T, OBA H, OWADA M, et al. Evaluation of the effects of pemafibrate on metabolic dysfunction-associated steatotic liver disease with hypertriglyceridemia using magnetic resonance elastography combined with fibrosis-4 index and the magnetic resonance imaging-aspartate aminotransferase score[J]. JGH Open, 2023, 7(12): 959-965. DOI: 10.1002/jgh3.13012.
[11]
SANYAL A J, CASTERA L, WONG V W S. Noninvasive assessment of liver fibrosis in NAFLD[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2026-2039. DOI: 10.1016/j.cgh.2023.03.042.
[12]
BREIT H C, VOSSHENRICH J, HEYE T, et al. Assessment of hepatic function employing hepatocyte specific contrast agent concentrations to multifactorially evaluate fibrotic remodeling[J]. Quant Imaging Med Surg, 2023, 13(7): 4284-4294. DOI: 10.21037/qims-22-884.
[13]
SCHEUER P J, MAGGI G. Hepatic fibrosis and collapse: histological distinction by orecin staining[J]. Histopathology, 1980, 4(5): 487-490. DOI: 10.1111/j.1365-2559.1980.tb02943.x.
[14]
MCHUGH M L. Interrater reliability: the kappa statistic[J]. Biochem Med, 2012, 22(3): 276-282.
[15]
KOO T K, LI M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research[J]. J Chiropr Med, 2016, 15(2): 155-163. DOI: 10.1016/j.jcm.2016.02.012.
[16]
JIANG J Z, ZOU L Q, ZHANG H, et al. Quantitative experimental study in a rabbit model of liver fibrosis by DCE-MRI with Gd-EOB-DTPA[J]. Chin J Magn Reson Imag, 2021, 12(6): 66-71. DOI: 10.12015/issn.1674-8034.2021.06.013.
[17]
LI J M, CAO B L, BI X J, et al. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study[J]. Radiol Med, 2021, 126(9): 1149-1158. DOI: 10.1007/s11547-021-01382-4.
[18]
ALHARBI F M, BESBES F R, ALMUTAIRI B S, et al. Fusion of magnetic resonance elastography images with computed tomography and magnetic resonance imaging using the human visual system[J/OL]. Cureus, 2023, 15(9): e45109 [2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/37842423/. DOI: 10.7759/cureus.45109.
[19]
EHMAN R L. Magnetic resonance elastography: from invention to standard of care[J]. Abdom Radiol (NY), 2022, 47(9): 3028-3036. DOI: 10.1007/s00261-022-03597-z.
[20]
FEUILLE C, KARI S, PATEL R, et al. Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease[J/OL]. Sci Rep, 2024, 14(1): 1765 [2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/38242967/. DOI: 10.1038/s41598-024-51295-1.
[21]
PEPIN K M, WELLE C L, GUGLIELMO F F, et al. Magnetic resonance elastography of the liver: everything you need to know to get started[J]. Abdom Radiol, 2022, 47(1): 94-114. DOI: 10.1007/s00261-021-03324-0.
[22]
HAN X J, YANG D W, XU H, et al. Superiority of spleen stiffness on two-dimensional magnetic resonance elastography over liver stiffness and serum tests in assessing portal hypertension in chronic liver disease[J]. Quant Imaging Med Surg, 2024, 14(2): 1429-1440. DOI: 10.21037/qims-22-1415.
[23]
ERDEN A, KURU ÖZ D, ADıGÜZEL M, et al. Quantitative liver magnetic resonance imaging: correlation between conventional magnetic resonance imaging, laboratory values, and prognostic indices in Budd-Chiari syndrome[J]. Diagn Interv Radiol, 2023, 29(3): 428-436. DOI: 10.4274/dir.2022.221462.
[24]
CATANIA R, LOPES VENDRAMI C, BOLSTER B D, et al. Intra-patient comparison of 3D and 2D magnetic resonance elastography techniques for assessment of liver stiffness[J]. Abdom Radiol, 2022, 47(3): 998-1008. DOI: 10.1007/s00261-021-03355-7.
[25]
BRADLEY C R, COX E F, PALANIYAPPAN N, et al. Variability of noninvasive MRI and biological markers in compensated cirrhosis: insights for assessing disease progression[J/OL]. Eur Radiol Exp, 2022, 6(1): 52 [2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/36274113/. DOI: 10.1186/s41747-022-00303-y.
[26]
BHUIYAN E H, OZKAYA E, KENNEDY P, et al. Magnetic resonance elastography fornoninvasive detection of liver fibrosis: is there an added value of 3D acquisition?[J]. Abdom Radiol, 2023, 48(11): 3420-3429. DOI: 10.1007/s00261-023-04036-3.
[27]
ZOU L Q, ZHANG H, ZHONG W X, et al. An experimental study of MR elastography and Gd-EOB-DTPA dynamic contrast-enhanced MRI in quantitative evaluation of liver fibrosis[J]. Chin J Radiol, 2021, 55(11): 1202-1208. DOI: 10.3760/cma.j.cn112149-20210408-00340.
[28]
WANG C, SUN W R, WU N, et al. A convenient and reproducible protocol for acquisition of the hepatocyte phase for liver function-impaired patients in gadoxetic acid disodium-enhanced magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024, 14(2): 1904-1915. DOI: 10.21037/qims-23-1147.
[29]
WANG C, YUAN X D, WU N, et al. Optimization of hepatobiliary phase imaging in gadoxetic acid-enhanced magnetic resonance imaging: a narrative review[J]. Quant Imaging Med Surg, 2023, 13(3): 1972-1982. DOI: 10.21037/qims-22-916.
[30]
CHILD N, SUNA G, DABIR D, et al. Comparison of MOLLI, shMOLLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(7): 768-776. DOI: 10.1093/ehjci/jex309.
[31]
LI Q T, CHEN T Y, SHI N N, et al. Quantitative evaluation of hepatic fibrosis by fibro Scan and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in chronic hepatitis B[J]. Abdom Radiol, 2022, 47(2): 684-692. DOI: 10.1007/s00261-021-03300-8.
[32]
AHN J H, YU J S, PARK K S, et al. Effect of hepatic steatosis on native T1 mapping of 3T magnetic resonance imaging in the assessment of T1 values for patients with non-alcoholic fatty liver disease[J]. Magn Reson Imaging, 2021, 80: 1-8. DOI: 10.1016/j.mri.2021.03.015.
[33]
THOMAIDES-BREARS H B, LEPE R, BANERJEE R, et al. Multiparametric MR mapping in clinical decision-making for diffuse liver disease[J]. Abdom Radiol, 2020, 45(11): 3507-3522. DOI: 10.1007/s00261-020-02684-3.
[34]
YANG R, CHEN Z S, PAN J, et al. Non-contrast T1ρ dispersion versus Gd-EOB-DTPA-enhanced T1mapping for the risk stratification of non-alcoholic fatty liver disease in rabbit models[J]. Magn Reson Imaging, 2024, 107: 130-137. DOI: 10.1016/j.mri.2024.01.013.

PREV Comparative use of artificial intelligence-assisted compressed sensing and parallel imaging for shoulder magnetic resonance imaging
NEXT Pancreatic myxofibrosarcoma: One case report and literature review
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn