Share:
Share this content in WeChat
X
Review
Progress in magnetic resonance imaging studies of the descending pain modulation system in patients with chronic pain
ZHOU Huiling  LEI Ting  CHEN Li  DU Yong 

Cite this article as: ZHOU H L, LEI T, CHEN L, et al. Progress in magnetic resonance imaging studies of the descending pain modulation system in patients with chronic pain[J]. Chin J Magn Reson Imaging, 2024, 15(8): 189-193. DOI:10.12015/issn.1674-8034.2024.08.030.


[Abstract] Chronic pain is a complex experience that significantly burdens both patients and society. Research on the neural mechanisms of chronic pain typically focus on the areas related to the perception and control of pain. However, there is often less attention to the structural and functional changes in the brain regions associated with the descending pain modulation system. These areas play key roles in both inhibiting and facilitating pain perception. This article reviews the latest MRI research progress on the structural and functional changes in the descending pain modulation system in patients with chronic pain, aiming to explore the physiological and pathological mechanisms of DPMS and further deepen the understanding of chronic pain.
[Keywords] chronic pain;descending pain modulation system;structural magnetic resonance imaging;functional magnetic resonance imaging;diffusion magnetic resonance imaging;magnetic resonance imaging

ZHOU Huiling   LEI Ting   CHEN Li   DU Yong*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Corresponding author: DU Y, E-mail: yongdu2005@163.com

Conflicts of interest   None.

Received  2024-03-25
Accepted  2024-08-08
DOI: 10.12015/issn.1674-8034.2024.08.030
Cite this article as: ZHOU H L, LEI T, CHEN L, et al. Progress in magnetic resonance imaging studies of the descending pain modulation system in patients with chronic pain[J]. Chin J Magn Reson Imaging, 2024, 15(8): 189-193. DOI:10.12015/issn.1674-8034.2024.08.030.

[1]
RAJA S N, CARR D B, COHEN M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982. DOI: 10.1097/j.pain.0000000000001939.
[2]
TREEDE R D, RIEF W, BARKE A, et al. A classification of chronic pain for ICD-11[J]. Pain, 2015, 156(6): 1003-1007. DOI: 10.1097/j.pain.0000000000000160.
[3]
COHEN S P, VASE L, HOOTEN W M. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet (London, England), 2021, 397(10289): 2082-2097. DOI: 10.1016/s0140-6736(21)00393-7.
[4]
KANG Y, TREWERN L, JACKMAN J, et al. Chronic pain: definitions and diagnosis[J/OL]. BMJ (Clinical research ed), 2023, 381: e076036 [2024-02-22]. https://www.bmj.com/content/381/bmj-2023-076036.long. DOI: 10.1136/bmj-2023-076036.
[5]
BANNISTER K, DICKENSON A H. The plasticity of descending controls in pain: translational probing[J]. J Physiol, 2017, 595(13): 4159-4166. DOI: 10.1113/jp274165.
[6]
LOCKWOOD S, DICKENSON A H. What goes up must come down: insights from studies on descending controls acting on spinal pain processing[J]. J Neural Transm (Vienna), 2020, 127(4): 541-549. DOI: 10.1007/s00702-019-02077-x.
[7]
MAKOVAC E, VENEZIA A, HOHENSCHURZ-SCHMIDT D, et al. The association between pain-induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey[J]. J Physiol, 2021, 599(23): 5243-5260. DOI: 10.1113/jp282013.
[8]
YIN J-B, LIANG S-H, LI F, et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors[J]. J Clin Invest, 2020, 130(12): 6555-6570. DOI: 10.1172/jci127607.
[9]
RAMASWAMY S, WODEHOUSE T. Conditioned pain modulation-A comprehensive review[J]. Neurophysiol Clin, 2021, 51(3): 197-208. DOI: 10.1016/j.neucli.2020.11.002.
[10]
HUYNH V, LÜTOLF R, ROSNER J, et al. Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions[J/OL]. Neuroimage, 2022, 247: 118742 [2024-02-22]. https://www.sciencedirect.com/science/article/pii/S1053811921010144. DOI: 10.1016/j.neuroimage.2021.118742.
[11]
YAO D, CHEN Y, CHEN G. The role of pain modulation pathway and related brain regions in pain[J]. Rev Neurosci, 2023, 34(8): 899-914. DOI: 10.1515/revneuro-2023-0037.
[12]
PENG B, JIAO Y, ZHANG Y, et al. Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters[J/OL]. Front Pharmacol, 2023, 14: 1159753 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157642/. DOI: 10.3389/fphar.2023.1159753.
[13]
BAGLEY E E, INGRAM S L. Endogenous opioid peptides in the descending pain modulatory circuit[J/OL]. Neuropharmacology, 2020, 173: 108131 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313723/. DOI: 10.1016/j.neuropharm.2020.108131.
[14]
WINTERS B L, LAU B K, VAUGHAN C W. Cannabinoids and Opioids Differentially Target Extrinsic and Intrinsic GABAergic Inputs onto the Periaqueductal Grey Descending Pathway[J]. J Neurosci, 2022, 42(41): 7744-7756. DOI: 10.1523/jneurosci.0997-22.2022.
[15]
KONG Q, LI T, REDDY S, et al. Brain stimulation targets for chronic pain: Insights from meta-analysis, functional connectivity and literature review[J/OL]. Neurotherapeutics, 2024, 21(1): e00297 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903102/. DOI: 10.1016/j.neurot.2023.10.007.
[16]
KONG D, ZHANG Y, GAO P, et al. The locus coeruleus input to the rostral ventromedial medulla mediates stress-induced colorectal visceral pain[J/OL]. Acta Neuropathol Commun, 2023, 11(1): 65 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108465/. DOI: 10.1186/s40478-023-01537-6.
[17]
PAGLIUSI M, AMORIM-MARQUES A P, LOBO M K, et al. The rostral ventromedial medulla modulates pain and depression-related behaviors caused by social stress[J]. Pain, 2024, 165(8): 1814-1823. DOI: 10.1097/j.pain.0000000000003257.
[18]
MEHNERT J, TINNERMANN A, BASEDAU H, et al. Functional representation of trigeminal nociceptive input in the human periaqueductal gray[J/OL]. Sci Adv, 2024, 10(12): eadj8213 [2024-04-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954197/. DOI: 10.1126/sciadv.adj8213.
[19]
HOEGH M, BANNISTER K. Pain science in practice (Part 6): How does descending modulation of pain work?[J]. J Orthop Sports Phys Ther, 2024, 54(2): 1-4. DOI: 10.2519/jospt.2024.12112.
[20]
HOEGH M, BANNISTER K. Pain science in practice (Part 7): How is descending modulation of pain measured?[J]. J Orthop Sports Phys Ther, 2024, 54(3): 1-6. DOI: 10.2519/jospt.2024.12113.
[21]
LUO J, ZHU H Q, GOU B, et al. Neuroimaging assessment of pain[J]. Neurotherapeutics, 2022, 19(5): 1467-1488. DOI: 10.1007/s13311-022-01274-z.
[22]
ASHBURNER J, FRISTON K J. Voxel-based morphometry--the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[23]
LAI K L, NIDDAM D M. Brain metabolism and structure in chronic migraine[J/OL]. Curr Pain Headache Rep, 2020, 24(11): 69 [2024-02-22]. https://link.springer.com/article/10.1007/s11916-020-00903-6. DOI: 10.1007/s11916-020-00903-6.
[24]
SCHELIGA S, DOHRN M F, HABEL U, et al. Reduced gray matter volume and cortical thickness in patients with small-fiber neuropathy[J/OL]. J Pain, 2024, 25(6): 104457 [2024-02-22]. https://www.sciencedirect.com/science/article/pii/S1526590024000105. DOI: 10.1016/j.jpain.2024.01.001.
[25]
NINNEMAN J V, GRETZON N P, STEGNER A J, et al. Pain, but not physical activity, is associated with gray matter volume differences in gulf war veterans with chronic pain[J]. J Neurosci, 2022, 42(28): 5605-5616. DOI: 10.1523/jneurosci.2394-21.2022.
[26]
ZHANG Y, MOORE M, JENNINGS J S, et al. The role of the brainstem in sleep disturbances and chronic pain of Gulf War and Iraq/Afghanistan veterans[J/OL]. Front Mol Neurosci, 2023, 16: 1266408 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800562/. DOI: 10.3389/fnmol.2023.1266408.
[27]
LI Z, ZHOU J, LAN L, et al. Concurrent brain structural and functional alterations in patients with migraine without aura: an fMRI study[J/OL]. J Headache Pain, 2020, 21(1): 141 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720576/. DOI: 10.1186/s10194-020-01203-5.
[28]
QIN Z, HE X W, ZHANG J, et al. Structural changes of cerebellum and brainstem in migraine without aura[J/OL]. J Headache Pain, 2019, 20(1): 93 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734280/. DOI: 10.1186/s10194-019-1045-5.
[29]
MOSCH B, HAGENA V, HERPERTZ S, et al. Neural correlates of control over pain in fibromyalgia patients[J/OL]. Neuroimage Clin, 2023, 37: 103355 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982683/. DOI: 10.1016/j.nicl.2023.103355.
[30]
KUMMER K K, MITRIĆ M, KALPACHIDOU T, et al. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain[J/OL]. Int J Mol Sci, 2020, 21(10): 3440 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279227/. DOI: 10.3390/ijms21103440.
[31]
DALE A M, FISCHL B, SERENO M I. Cortical surface-based analysis. I. Segmentation and surface reconstruction[J/OL]. Neuroimage, 1999, 9(2): 179-194 [2024-02-22]. https://www.sciencedirect.com/science/article/pii/S1053811998903950. DOI: 10.1006/nimg.1998.0395.
[32]
WU M, JIANG X, QIU J, et al. Gray and white matter abnormalities in primary trigeminal neuralgia with and without neurovascular compression[J/OL]. J Headache Pain, 2020, 21(1): 136 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690170/. DOI: 10.1186/s10194-020-01205-3.
[33]
LIU X, GU L, LIU J, et al. MRI study of cerebral cortical thickness in patients with herpes zoster and postherpetic neuralgia[J]. J Pain Res, 2022, 15: 623-632. DOI: 10.2147/jpr.S352105.
[34]
LAI K L, NIDDAM D M, FUH J L, et al. Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses[J]. Cephalalgia, 2020, 40(6): 575-585. DOI: 10.1177/0333102420920005.
[35]
DANILIN L K, SPINDLER M, SÖRÖS P, et al. Heart rate and heart rate variability in patients with chronic inflammatory joint disease: the role of pain duration and the insular cortex[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 75 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783425/. DOI: 10.1186/s12891-022-05009-1.
[36]
MATSUO Y, KURATA J, SEKIGUCHI M, et al. Attenuation of cortical activity triggering descending pain inhibition in chronic low back pain patients: a functional magnetic resonance imaging study[J]. J Anesth, 2017, 31(4): 523-530. DOI: 10.1007/s00540-017-2343-1.
[37]
GE S, HU Q, XIA G, et al. The ALFF alterations of spontaneous pelvic pain in the patients of chronic prostatitis/chronic pelvic pain syndrome evaluated by fMRI[J/OL]. Brain Sci, 2022, 12(10): 1344 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599805/. DOI: 10.3390/brainsci12101344.
[38]
WANG W, ZHANG X, BAI X, et al. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray with episodic and chronic migraine: a proton magnetic resonance spectroscopy study[J/OL]. J Headache Pain, 2022, 23(1): 83 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287958/. DOI: 10.1186/s10194-022-01452-6.
[39]
VAN DEN HEUVEL M P, HULSHOFF POL H E. Exploring the brain network: A review on resting-state fMRI functional connectivity[J]. Eur Neuropsychopharmacol, 2010, 20(8): 519-534. DOI: 10.1016/j.euroneuro.2010.03.008.
[40]
LI H, LI X, FENG Y, et al. Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia[J/OL]. Neuroimage, 2020, 221: 117186 [2024-02-22]. https://www.sciencedirect.com/science/article/pii/S1053811920306728. DOI: 10.1016/j.neuroimage.2020.117186.
[41]
MILLS E P, DI PIETRO F, ALSHELH Z, et al. Brainstem pain-control circuitry connectivity in chronic neuropathic pain[J]. J Neurosci, 2018, 38(2): 465-473. DOI: 10.1523/jneurosci.1647-17.2017.
[42]
MILLS E P, AKHTER R, DI PIETRO F, et al. Altered brainstem pain modulating circuitry functional connectivity in chronic painful temporomandibular disorder[J]. J Pain, 2021, 22(2): 219-232. DOI: 10.1016/j.jpain.2020.08.002.
[43]
SCHWEDT T J, NIKOLOVA S, DUMKRIEGER G, et al. Longitudinal changes in functional connectivity and pain-induced brain activations in patients with migraine: a functional MRI study pre- and post- treatment with Erenumab[J/OL]. J Headache Pain, 2022, 23(1): 159 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748909/. DOI: 10.1186/s10194-022-01526-5.
[44]
MEEKER T J, SCHMID A C, KEASER M L, et al. Tonic pain alters functional connectivity of the descending pain modulatory network involving amygdala, periaqueductal gray, parabrachial nucleus and anterior cingulate cortex[J/OL]. Neuroimage, 2022, 256: 119278 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250649/. DOI: 10.1016/j.neuroimage.2022.119278.
[45]
SOLDATELLI M, FRANCO Á O, PICON F, et al. Primary somatosensory cortex and periaqueductal gray functional connectivity as a marker of the dysfunction of the descending pain modulatory system in fibromyalgia[J]. Korean J Pain, 2023, 36(1): 113-127. DOI: 10.3344/kjp.22225.
[46]
ARGAMAN Y, GRANOVSKY Y, SPRECHER E, et al. Resting-state functional connectivity predicts motor cortex stimulation-dependent pain relief in fibromyalgia syndrome patients[J/OL]. Sci Rep, 2022, 12(1): 17135 [2024-02-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9556524/. DOI: 10.1038/s41598-022-21557-x.
[47]
HADJIPAVLOU G, DUNCKLEY P, BEHRENS T E, et al. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls[J]. Pain, 2006, 123(1-2): 169-178. DOI: 10.1016/j.pain.2006.02.027.
[48]
MARCISZEWSKI K K, MEYLAKH N, DI PIETRO F, et al. Fluctuating regional brainstem diffusion imaging measures of microstructure across the migraine cycle[J/OL]. eNeuro, 2019, 6(4): ENEURO.0005-19.2019 [2024-02-22]. https://pubmed.ncbi.nlm.nih.gov/31300542/. DOI: 10.1523/eneuro.0005-19.2019.
[49]
ZHANG Y, VAKHTIN A A, DIETCH J, et al. Brainstem damage is associated with poorer sleep quality and increased pain in gulf war illness veterans[J/OL]. Life Sci, 2021, 280: 119724 [2024-02-22]. https://www.sciencedirect.com/science/article/pii/S0024320521007104. DOI: 10.1016/j.lfs.2021.119724.
[50]
XU H, SEMINOWICZ D A, KRIMMEL S R, et al. Altered structural and functional connectivity of salience network in patients with classic trigeminal neuralgia[J]. J Pain, 2022, 23(8): 1389-1399. DOI: 10.1016/j.jpain.2022.02.012.

PREV Research progress in evaluating brain function of related brain regions in patients with insomnia disorder based on fMRI
NEXT Current status of potential magnetic resonance imaging markers in the neural microenvironment in prostate cancer patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn