Share:
Share this content in WeChat
X
Review
Research advances in the quantitative analysis based on diffusion tensor imaging for grading and molecular typing of gliomas
HAN Xin  LU Jie 

Cite this article as: HAN X, LU J. Research advances in the quantitative analysis based on diffusion tensor imaging for grading and molecular typing of gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(8): 201-206. DOI:10.12015/issn.1674-8034.2024.08.032.


[Abstract] Gliomas represent approximately 80% of primary malignant brain tumors in adults. Accurate preoperative grading and molecular classification of gliomas can aid in formulating personalized treatment plans and extending the survival period of patients. Diffusion tensor imaging, a magnetic resonance imaging technique, evaluates water molecule diffusion to reflect alterations in tissue structure. This method can non-invasively evaluates water molecule diffusion rate and anisotropy within tumors in vivo, offering imaging metrics for predicting preoperative glioma grading and genotyping. This article provides a comprehensive review of the clinical studies of diffusion tensor imaging with quantitative parameters such as diffusion coefficient and anisotropy in the prediction of glioma grading and molecular classification, with the aim of providing reliable imaging indices for the accurate prediction of glioma grading and molecular typing before surgery, thus assisting in the accurate treatment of glioma patients.
[Keywords] glioma;diffusion tensor imaging;magnetic resonance imaging;neoplasm grading;molecular typing

HAN Xin1, 2   LU Jie1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China

Corresponding author: LU J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

Received  2024-04-18
Accepted  2024-08-08
DOI: 10.12015/issn.1674-8034.2024.08.032
Cite this article as: HAN X, LU J. Research advances in the quantitative analysis based on diffusion tensor imaging for grading and molecular typing of gliomas[J]. Chin J Magn Reson Imaging, 2024, 15(8): 201-206. DOI:10.12015/issn.1674-8034.2024.08.032.

[1]
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019[J/OL]. Neuro-Oncol, 2022, 24(Suppl 5): v1-v95 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36196752/. DOI: 10.1093/neuonc/noac202.
[2]
MILLER K D, OSTROM Q T, KRUCHKO C, et al. Brain and other central nervous system tumor statistics, 2021[J]. CA: Cancer J Clin, 2021, 71(5): 381-406. DOI: 10.3322/caac.21693.
[3]
SZYLBERG M, SOKAL P, ŚLEDZIŃSKA P, et al. MGMT promoter methylation as a prognostic factor in primary glioblastoma: A single-institution observational study[J/OL]. Biomedicines, 2022, 10(8): 2030 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36009577/. DOI: 10.3390/biomedicines10082030.
[4]
WONG Q H W, LI K K W, WANG W W, et al. Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas[J]. Mod Pathol, 2021, 34(7): 1245-1260. DOI: 10.1038/s41379-021-00778-x.
[5]
MARTÍN-NOGUEROL T, MOHAN S, SANTOS-ARMENTIA E, et al. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions[J/OL]. Eur J Radiol, 2021, 143: 109900 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34412007/. DOI: 10.1016/j.ejrad.2021.109900.
[6]
LI Y, ZHANG W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma[J]. Neurosurg Rev, 2020, 43(3): 881-891. DOI: 10.1007/s10143-018-1050-1.
[7]
RAMEH V, VAJAPEYAM S, ZIAEI A, et al. Correlation between multiparametric MR imaging and molecular genetics in pontine pediatric high-grade glioma[J]. AJNR Am J Neuroradiol, 2023, 44(7): 833-840. DOI: 10.3174/ajnr.A7910.
[8]
MARTUCCI M, RUSSO R, SCHIMPERNA F, et al. Magnetic resonance imaging of primary adult brain tumors: State of the art and future perspectives[J/OL]. Biomedicines, 2023, 11(2): 364 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36830900/. DOI: 10.3390/biomedicines11020364.
[9]
YEH F C, IRIMIA A, BASTOS D C D A, et al. Tractography methods and findings in brain tumors and traumatic brain injury[J/OL]. NeuroImage, 2021, 245: 118651 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34673247/. DOI: 10.1016/j.neuroimage.2021.118651.
[10]
LATINI F, FAHLSTRÖM M, BEHÁŇOVÁ A, et al. The link between gliomas infiltration and white matter architecture investigated with electron microscopy and diffusion tensor imaging[J/OL]. NeuroImage: Clin, 2021, 31: 102735 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/34247117/. DOI: 10.1016/j.nicl.2021.102735.
[11]
WANG Z, GUAN F, DUAN W, et al. Diffusion tensor imaging-based machine learning for IDH wild-type glioblastoma stratification to reveal the biological underpinning of radiomic features[J]. CNS neurosci ther, 2023, 29(11): 3339-3350. DOI: 10.1111/cns.14263.
[12]
TIEFENBACH J, LU V M, METZLER A R, et al. The use of advanced neuroimaging modalities in the evaluation of low-grade glioma in adults: a literature review[J/OL]. Neurosurg Focus, 2024, 56(2): E3 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38301240/. DOI: 10.3171/2023.11.FOCUS23649.
[13]
DU P, CHEN H, LV K, et al. A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas[J/OL]. J Clin Med, 2022, 11(13): 3802 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/35807084/. DOI: 10.3390/jcm11133802.
[14]
CAO J, YAN W, ZHAN Z, et al. Epidemiology and risk stratification of low-grade gliomas in the United States, 2004-2019: A competing-risk regression model for survival analysis[J/OL]. Front Oncol, 2023, 13: 1079597 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36937393/. DOI: 10.3389/fonc.2023.1079597.
[15]
TOADER C, EVA L, COSTEA D, et al. Low-grade gliomas: histological subtypes, molecular mechanisms, and treatment strategies[J/OL]. Brain Sci, 2023, 13(12): 1700 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38137148/. DOI: 10.3390/brainsci13121700.
[16]
SHIKALOV A, KOMAN I, KOGAN N M. Targeted Glioma Therapy-Clinical Trials and Future Directions[J/OL]. Pharmaceutics, 2024, 16(1): 100 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38258110/. DOI: 10.3390/pharmaceutics16010100.
[17]
JIANG L, XIAO CY, XU Q, et al. Analysis of DTI-derived tensor metrics in differential diagnosis between low-grade and high-grade gliomas[J/OL]. Front Aging Neurosci, 2017, 9: 271 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/28848428/. DOI: 10.3389/fnagi.2017.00271.
[18]
SMITHA KA, KUMAR GUPTA A, JAYASREE R S. Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma[J]. Eur J Radiol, 2013, 82(5): 857-861. DOI: 10.1016/j.ejrad.2012.12.027.
[19]
POGOSBEKIAN E L, PRONIN I N, ZAKHAROVA N E, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
[20]
GOEBELL E, PAUSTENBACH S, VAETERLEIN O, et al. Low-grade and anaplastic gliomas: Differences in architecture evaluated with diffusion-tensor MR imaging[J]. Radiology, 2006, 239(1): 217-222. DOI: 10.1148/radiol.2383050059.
[21]
LU S, AHN D, JOHNSON G, et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index[J]. Radiology, 2004, 232(1): 221-228. DOI: 10.1148/radiol.2321030653.
[22]
WANG P, XIE S, WU Q, et al. Model incorporating multiple diffusion MRI features: development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade[J]. Eur Radiol, 2023, 33(12): 8809-8820. DOI: 10.1007/s00330-023-09861-0.
[23]
SERVER A, GRAFF B A, JOSEFSEN R, et al. Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T[J/OL]. Eur J Radiol, 2014, 83(3): e156-e165 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/24457139/. DOI: 10.1016/j.ejrad.2013.12.023.
[24]
RAJA R, SINHA N, SAINI J, et al. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas[J]. Neuroradiology, 2016, 58(12): 1217-1231. DOI: 10.1007/s00234-016-1758-y.
[25]
LIN K, CIDAN W, QI Y, et al. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging[J]. Med Phys, 2022, 49(7): 4419-4429. DOI: 10.1002/mp.15648.
[26]
WINSTON G P. The physical and biological basis of quantitative parameters derived from diffusion MRI[J]. Quant Imaging Med Surg, 2012, 2(4): 254-265. DOI: 10.3978/j.issn.2223-4292.2012.12.05.
[27]
SEOW P, HERNOWO A T, NARAYANAN V, et al. Neural fiber integrity in high- versus low-grade glioma using probabilistic fiber tracking[J]. Acad Radiol, 2021, 28(12): 1721-1732. DOI: 10.1016/j.acra.2020.09.007.
[28]
EIDEL O, BURTH S, NEUMANN J O, et al. Tumor infiltration in enhancing and non-enhancing parts of glioblastoma: A correlation with histopathology[J/OL]. PloS One, 2017, 12(1): e0169292 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/28103256/. DOI: 10.1371/journal.pone.0169292.
[29]
ZHANG Z, XIAO J, WU S, et al. Deep convolutional radiomic features on diffusion tensor images for classification of glioma grades[J]. J Digit Imaging, 2020, 33(4): 826-837. DOI: 10.1007/s10278-020-00322-4.
[30]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro-Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[31]
JAMSHIDI P, BRAT D J. The 2021 WHO classification of central nervous system tumors: what neurologists need to know[J]. Curr Opin Neurol, 2022, 35(6): 764-771. DOI: 10.1097/WCO.0000000000001109.
[32]
PENKOVA A, KUZIAKOVA O, GULAIA V, et al. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects[J/OL]. Front Mol Biosci, 2023, 10: 1216102 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/37908227/. DOI: 10.3389/fmolb.2023.1216102.
[33]
WOLTER M, FELSBERG J, MALZKORN B, et al. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas[J/OL]. Acta Neuropathol Commun, 2022, 10(1): 42 [2024-04-18]. DOI: 10.1186/s40478-022-01335-6.
[34]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[35]
LI Y, QIN Q, ZHANG Y, et al. Noninvasive determination of the IDH status of gliomas using MRI and MRI-Based radiomics: Impact on diagnosis and prognosis[J]. Curr Oncol, 2022, 29(10): 6893-6907. DOI: 10.3390/curroncol29100542.
[36]
ERICES J I, BIZAMA C, NIECHI I, et al. Glioblastoma microenvironment and invasiveness: New insights and therapeutic targets[J/OL]. Int J Mol Sci, 2023, 24(8): 7047 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/37108208/. DOI: 10.3390/ijms24087047.
[37]
ALSHIEKH NASANY R, DE LA FUENTE M I. Therapies for IDH-Mutant gliomas[J]. Curr Neurol Neurosci Rep, 2023, 23(5): 225-233. DOI: 10.1007/s11910-023-01265-3.
[38]
KESSLER T, ITO J, WICK W, et al. Conventional and emerging treatments of astrocytomas and oligodendrogliomas[J]. J Neuro-Oncol, 2023, 162(3): 471-478. DOI: 10.1007/s11060-022-04216-z.
[39]
FIGINI M, RIVA M, GRAHAM M, et al. Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI: Single-shell versus multishell diffusion models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[40]
ZHAO J, WANG Y L, LI X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neuro-Oncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[41]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[42]
AUGELLI R, CICERI E, GHIMENTON C, et al. Magnetic resonance diffusion-tensor imaging metrics in high grade gliomas: Correlation with IDH1 gene status in WHO 2016 era[J]. Eur J Radiol, 2019, 116: 174-179. DOI: 10.1016/j.ejrad.2019.04.020.
[43]
HALILIBRAHIMOĞLU H, POLAT K, KESKIN S, et al. Associating IDH and TERT mutations in glioma with diffusion anisotropy in normal-appearing white matter[J]. Am J Neuroradiol, 2023, 44(5): 553-561. DOI: 10.3174/ajnr.A7855.
[44]
WANG P, HE J, MA X, et al. Applying MAP-MRI to identify the WHO grade and main genetic features of adult-type diffuse gliomas: A comparison of three diffusion-weighted MRI models[J]. Acad Radiol, 2023, 30(7): 1238-1246. DOI: 10.1016/j.acra.2022.10.009.
[45]
HUANG Z, LU C, LI G, et al. Prediction of lower grade insular glioma molecular pathology using diffusion tensor imaging metric-based histogram parameters[J/OL]. Front Oncol, 2021, 11: 627202 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33777772/. DOI: 10.3389/fonc.2021.627202.
[46]
GAO A, ZHANG H, YAN X, et al. Whole-tumor histogram analysis of multiple diffusion metrics for glioma genotyping[J]. Radiology, 2022, 302(3): 652-661. DOI: 10.1148/radiol.210820.
[47]
PARK C J, CHOI Y S, PARK Y W, et al. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status[J]. Neuroradiology, 2020, 62(3): 319-326. DOI: 10.1007/s00234-019-02312-y.
[48]
YUAN J, SIAKALLIS L, LI H B, et al. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep radiomics approach[J/OL]. BMC Med Imaging, 2024, 24(1): 104 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/38702613/. DOI: 10.1186/s12880-024-01274-9.
[49]
ARITA H, ICHIMURA K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas[J]. Brain Tumor Pathol, 2022, 39(3): 121-129. DOI: 10.1007/s10014-021-00424-z.
[50]
PARK Y W, AHN S S, PARK C J, et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J]. Eur Radiol, 2020, 30(12): 6475-6484. DOI: 10.1007/s00330-020-07090-3.
[51]
LIN K, GUEBLE SE, SUNDARAM RK, et al. Mechanism-based design of agents that selectively target drug-resistant glioma[J]. Sci, 2022, 377(6605): 502-511. DOI: 10.1126/science.abn7570.
[52]
DELLA MONICA R, CUOMO M, BUONAIUTO M, et al. MGMT and whole-genome DNA methylation impacts on diagnosis, prognosis and therapy of glioblastoma multiforme[J/OL]. Int J Mol Sci, 2022, 23(13): 7148 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/35806153/. DOI: 10.3390/ijms23137148.
[53]
MOON W J, CHOI J W, ROH H G, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiology, 2012, 54(6): 555-563. DOI: 10.1007/s00234-011-0947-y.
[54]
LATYSHEVA A, GEIER O M, HOPE T R, et al. Diagnostic utility of Restriction Spectrum Imaging in the characterization of the peritumoral brain zone in glioblastoma: Analysis of overall and progression-free survival[J/OL]. Eur J Radiol, 2020, 132: 109289 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33002815/. DOI: 10.1016/j.ejrad.2020.109289.
[55]
TAN Y, MU W, WANG X C, et al. Whole-tumor radiomics analysis of DKI and DTI may improve the prediction of genotypes for astrocytomas: A preliminary study[J/OL]. Eur J Radiol, 2020, 124: 108785 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/32004731/. DOI: 10.1016/j.ejrad.2019.108785.
[56]
JIAO K J, YANG B, CHEN W, et al. Prediction of habitat subregions of the glioblastoma microenvironment based on multimodal MRI radiomics for MGMT promoter methylation expression[J]. Chin J Magn Reson Imaging, 2023, 14(11): 25-30, 76. DOI: 10.12015/issn.1674-8034.2023.11.005.
[57]
ALZIAL G, RENOULT O, PARIS F, et al. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma[J]. Oncogene, 2022, 41(5): 613-621. DOI: 10.1038/s41388-021-02056-1.

PREV Current status of potential magnetic resonance imaging markers in the neural microenvironment in prostate cancer patients
NEXT Advances in differentiating intracranial isolated fibromas from different grades of meningiomas based on diffusion-weighted imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn