Share:
Share this content in WeChat
X
Review
Research progress of cardiac magnetic resonance feature tracking technique in evaluating myocardial strain in autoimmune rheumatic diseases
LIU Yuanchao  WANG Wenwen  GAO Yingying  QI Rongxing 

Cite this article as: LIU Y C, WANG W W, GAO Y Y, et al. Research progress of cardiac magnetic resonance feature tracking technique in evaluating myocardial strain in autoimmune rheumatic diseases[J]. Chin J Magn Reson Imaging, 2024, 15(8): 224-228, 234. DOI:10.12015/issn.1674-8034.2024.08.036.


[Abstract] Autoimmune rheumatic diseases (ARDs) are characterized by abnormal activation of the body's immune system, resulting in an inflammatory reaction mediated by antigen-antibody complexes and causing damage to multiple systems as a systemic disease. These diseases frequently involve the cardiovascular system, and long-term inflammatory reaction causes myocardial fibrosis and myocardial remodeling, which ultimately results in poor prognosis for patients. Imaging examinations can provide reliable evidence of cardiac involvement in patients with ARDs. Cardiac magnetic resonance feature tracking (CMR-FT) technology enables quantitative evaluation of myocardial strain, thus playing an important clinical role in recognizing myocardial damage and assessing its severity and prognosis. The present article provided an in-depth explanation of the principle and application value of CMR-FT technology in evaluating cardiovascular involvement in patients with ARDs. Additionally, it summarized the progress made in existing research, highlights limitations, and proposes future improvement measures. The ultimate goal is to integrate CMR-FT technology into clinical practice and provide more reliable imaging for patients with ARDs.
[Keywords] autoimmune rheumatic diseases;heart;feature tracking;myocardial strain;cardiac magnetic resonance;magnetic resonance imaging

LIU Yuanchao1   WANG Wenwen2   GAO Yingying2   QI Rongxing1*  

1 Department of Imaging, the Second Affiliated Hospital of Nantong University, Nantong 226001, China

2 Department of Rheumatic Immunology, the Second Affiliated Hospital of Nantong University, Nantong 226001, China

Corresponding author: QI R X, E-mail: qirx0915@163.com

Conflicts of interest   None.

Received  2024-04-20
Accepted  2024-08-11
DOI: 10.12015/issn.1674-8034.2024.08.036
Cite this article as: LIU Y C, WANG W W, GAO Y Y, et al. Research progress of cardiac magnetic resonance feature tracking technique in evaluating myocardial strain in autoimmune rheumatic diseases[J]. Chin J Magn Reson Imaging, 2024, 15(8): 224-228, 234. DOI:10.12015/issn.1674-8034.2024.08.036.

[1]
GOLDBLATT F, O'NEILL S G. Clinical aspects of autoimmune rheumatic diseases[J]. Lancet, 2013, 382(9894): 797-808. DOI: 10.1016/S0140-6736(13)61499-3.
[2]
PAN S Y, TIAN H M, ZHU Y, et al. Cardiac damage in autoimmune diseases: target organ involvement that cannot be ignored[J/OL]. Front Immunol, 2022, 13: 1056400 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36483559/. DOI: 10.3389/fimmu.2022.1056400.
[3]
LØGSTRUP B B. Heart failure in rheumatic disease: secular trends and novel insights[J]. Rheum Dis Clin North Am, 2023, 49(1): 67-79. DOI: 10.1016/j.rdc.2022.08.003.
[4]
NONA P, RUSSELL C. Cardio-rheumatology: prevention of cardiovascular disease in inflammatory disorders[J]. Med Clin North Am, 2022, 106(2): 349-363. DOI: 10.1016/j.mcna.2021.11.010.
[5]
RAMAN S V, CHANDRASHEKHAR Y. Myocardial fibrosis: a viable imaging target in diastolic dysfunction and heart failure?[J]. JACC Cardiovasc Imaging, 2023, 16(6): 870-872. DOI: 10.1016/j.jcmg.2023.05.001.
[6]
ZHANG Y, ZHANG X N, WANG Y L, et al. Relationship between diffuse fibrosis assessed by CMR and depressed myocardial strain in different stages of heart failure[J/OL]. Eur J Radiol, 2023, 164: 110848 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37156180/. DOI: 10.1016/j.ejrad.2023.110848.
[7]
ANTAR S A, ASHOUR N A, MARAWAN M E, et al. Fibrosis: types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation[J/OL]. Int J Mol Sci, 2023, 24(4): 4004 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36835428/. DOI: 10.3390/ijms24044004.
[8]
MAVROGENI S, PEPE A, NIJVELDT R, et al. Cardiovascular magnetic resonance in autoimmune rheumatic diseases: a clinical consensus document by the European Association of Cardiovascular Imaging[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 23(9): e308-e322 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35808990/. DOI: 10.1093/ehjci/jeac134.
[9]
RAJIAH P S, MOORE A, BRONCANO J, et al. Diastology with cardiac MRI: a practical guide[J/OL]. Radiographics, 2023, 43(9): e220144 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37535462/. DOI: 10.1148/rg.220144.
[10]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J]. Eur Radiol, 2022, 32(7): 4384-4394. DOI: 10.1007/s00330-022-08598-6.
[11]
PEZESHKI P S, GHORASHI S M, HOUSHMAND G, et al. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases[J]. Heart Fail Rev, 2023, 28(5): 1189-1199. DOI: 10.1007/s10741-023-10321-6.
[12]
XU J, YANG W J, ZHAO S H, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[13]
SIERRA-GALAN L M, BHATIA M, ALBERTO-DELGADO A L, et al. Cardiac magnetic resonance in rheumatology to detect cardiac involvement since early and pre-clinical stages of the autoimmune diseases: a narrative review[J/OL]. Front Cardiovasc Med, 2022, 9: 870200 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35911548/. DOI: 10.3389/fcvm.2022.870200.
[14]
XU Y W, CHEN Y C. Application of cardiac magnetic resonance in detecting cardiac involvement in autoimmune rheumatic disease[J]. Adv Cardiovasc Dis, 2019, 40(5): 676-679. DOI: 10.16806/j.cnki.issn.1004-3934.2019.05.005.
[15]
RAJIAH P S, KALISZ K, BRONCANO J, et al. Myocardial strain evaluation with cardiovascular MRI: physics, principles, and clinical applications[J]. Radiographics, 2022, 42(4): 968-990. DOI: 10.1148/rg.210174.
[16]
KONG H H, CAO J X, TIAN J F, et al. Evaluation of left ventricular diastolic function in patients with coronary microvascular dysfunction via cardiovascular magnetic resonance feature tracking[J]. Quant Imaging Med Surg, 2023, 13(10): 7281-7293. DOI: 10.21037/qims-23-47.
[17]
LANGE T, SCHUSTER A. Quantification of myocardial deformation applying CMR-feature-tracking-all about the left ventricle?[J]. Curr Heart Fail Rep, 2021, 18(4): 225-239. DOI: 10.1007/s11897-021-00515-0.
[18]
HE J, ZHAO S H, LU M J. Cardiac magnetic resonance feature tracking technique and its progress[J]. Chin J Magn Reson Imag, 2020, 11(6): 469-473. DOI: 10.12015/issn.1674-8034.2020.06.018.
[19]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[20]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/27561421/. DOI: 10.1186/s12968-016-0269-7.
[21]
ZLIBUT A, COJOCARU C, ONCIUL S, et al. Cardiac magnetic resonance imaging in appraising myocardial strain and biomechanics: a current overview[J/OL]. Diagnostics, 2023, 13(3): 553 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36766658/. DOI: 10.3390/diagnostics13030553.
[22]
LI G X, ZHANG Z, GAO Y Y, et al. Age- and sex-specific reference values of biventricular strain and strain rate derived from a large cohort of healthy Chinese adults: a cardiovascular magnetic resonance feature tracking study[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 63 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/36404299/. DOI: 10.1186/s12968-022-00881-1.
[23]
TRUONG V T, PALMER C, WOLKING S, et al. Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 446-453. DOI: 10.1093/ehjci/jez157.
[24]
ROMANO S, FARZANEH-FAR A. Advancing CMR feature-tracking strain: toward standardization and clinical adoption[J]. JACC Cardiovasc Imaging, 2024, 17(4): 380-381. DOI: 10.1016/j.jcmg.2023.06.019.
[25]
YANG W J, XU J, ZHU L Y, et al. Myocardial strain measurements derived from MR feature-tracking: influence of sex, age, field strength, and vendor[J]. JACC Cardiovasc Imaging, 2024, 17(4): 364-379. DOI: 10.1016/j.jcmg.2023.05.019.
[26]
VOS J L, LEINER T, VAN DIJK A P J, et al. Right atrial and ventricular strain detects subclinical changes in right ventricular function in precapillary pulmonary hypertension[J]. Int J Cardiovasc Imaging, 2022, 38(8): 1699-1710. DOI: 10.1007/s10554-022-02555-6.
[27]
LI R, HUANG Y X, CHEN Z X, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2021,12(10):98-100, 104. DOI: 10.12015/issn.1674-8034.2021.10.025.
[28]
WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imag, 2023, 14(3): 179-183. DOI: 10.12015/issn.1674-8034.2023.03.033.
[29]
BELLO N, MEYERS K J, WORKMAN J, et al. Cardiovascular events and risk in patients with systemic lupus erythematosus: systematic literature review and meta-analysis[J]. Lupus, 2023, 32(3): 325-341. DOI: 10.1177/09612033221147471.
[30]
AZZAM M, AWAD A, ABUGHARBYEH A, et al. Myocarditis in connective tissue diseases: an often-overlooked clinical manifestation[J]. Rheumatol Int, 2023, 43(11): 1983-1992. DOI: 10.1007/s00296-023-05428-w.
[31]
MUNGUÍA-REALPOZO P, MENDOZA-PINTO C, GARCÍA-CARRASCO M, et al. Higher body mass index and disease duration are associated with increased risk of left ventricular diastolic dysfunction in women with systemic lupus erythematosus[J]. Lupus, 2022, 31(13): 1639-1648. DOI: 10.1177/09612033221128433.
[32]
YAFASOVA A, FOSBØL E L, SCHOU M, et al. Long-term cardiovascular outcomes in systemic lupus erythematosus[J]. J Am Coll Cardiol, 2021, 77(14): 1717-1727. DOI: 10.1016/j.jacc.2021.02.029.
[33]
FANOURIAKIS A, KOSTOPOULOU M, ANDERSEN J, et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update[J]. Ann Rheum Dis, 2024, 83(1): 15-29. DOI: 10.1136/ard-2023-224762.
[34]
PU H X, CUI B B, LIU J, et al. Characterization and clinical significance of biventricular mechanics in patients with systemic lupus erythematosus by 3T cardiovascular magnetic resonance tissue tracking[J]. Quant Imaging Med Surg, 2022, 12(2): 1079-1095. DOI: 10.21037/qims-21-520.
[35]
WU R, SHI R Y, AN D A L, et al. Biventricular tissue tracking demonstrating associations between left ventricular myocardial extracellular volume, pulmonary artery pressure, and reduced right ventricular ejection fraction in patients with systemic lupus erythematosus using cardiovascular MRI[J/OL]. Clin Radiol, 2020, 75(3): 237.e17-237.237.e25 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/31679817/. DOI: 10.1016/j.crad.2019.09.136.
[36]
PÉREZ-TOPETE S E, MIRANDA-AQUINO T, HERNÁNDEZ-DEL RÍO J E, et al. Left atrial strain in patients with systemic lupus erythematosus[J]. Reumatol Clin, 2021, 17(2): 74-81. DOI: 10.1016/j.reuma.2019.03.006.
[37]
DíAZ-GONZáLEZ F, HERNáNDEZ-HERNáNDEZ M V. Rheumatoid arthritis[J]. Med Clin (Barc), 2023, 161(12): 533-542. DOI: 10.1016/j.medcli.2023.07.014.
[38]
RODRIGUES P, FERREIRA B, FONSECA T, et al. Subclinical ventricular dysfunction in rheumatoid arthritis[J]. Int J Cardiovasc Imaging, 2021, 37(3): 847-859. DOI: 10.1007/s10554-020-02057-3.
[39]
PARK E, ITO K, IQBAL R, et al. Prospective changes in diastolic function in patients with rheumatoid arthritis[J/OL]. Arthritis Res Ther, 2022, 24(1): 184 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35932048/. DOI: 10.1186/s13075-022-02864-0.
[40]
TAŃSKI W, GAĆ P, CHACHAJ A, et al. Left ventricular myocardial strain assessed by cardiac magnetic resonance feature tracking in patients with rheumatoid arthritis[J/OL]. Insights Imaging, 2021, 12(1): 5 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/33410952/. DOI: 10.1186/s13244-020-00948-6.
[41]
YOKOE I, KOBAYASHI H, KOBAYASHI Y, et al. Impact of biological treatment on left ventricular dysfunction determined by global circumferential, longitudinal and radial strain values using cardiac magnetic resonance imaging in patients with rheumatoid arthritis[J]. Int J Rheum Dis, 2020, 23(10): 1363-1371. DOI: 10.1111/1756-185X.13942.
[42]
GUÉDON A F, CARRAT F, MOUTHON L, et al. Heart and systemic sclerosis—findings from a national cohort study[J/OL]. Rheumatology (Oxford), 2023: kead599 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/37944039/. DOI: 10.1093/rheumatology/kead599.
[43]
MARKOUSIS-MAVROGENIS G, MAVROGENI S I. Cardiac inflammation/fibrosis in systemic sclerosis: 'a journey of a thousand Miles begins with a single step'[J]. Rheumatology, 2022, 61(6): 2215-2216. DOI: 10.1093/rheumatology/keab800.
[44]
BRUNI C, BUCH M H, DJOKOVIC A, et al. Consensus on the assessment of systemic sclerosis-associated primary heart involvement: world Scleroderma Foundation/Heart Failure Association guidance on screening, diagnosis, and follow-up assessment[J]. J Scleroderma Relat Disord, 2023, 8(3): 169-182. DOI: 10.1177/23971983231163413.
[45]
BRATIS K, LINDHOLM A, HESSELSTRAND R, et al. CMR feature tracking in cardiac asymptomatic systemic sclerosis: clinical implications[J/OL]. PLoS One, 2019, 14(8): e0221021 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/31433819/. DOI: 10.1371/journal.pone.0221021.
[46]
FEHER A, MILLER E J, PETERS D C, et al. Impaired left-ventricular global longitudinal strain by feature-tracking cardiac MRI predicts mortality in systemic sclerosis[J]. Rheumatol Int, 2023, 43(5): 849-858. DOI: 10.1007/s00296-023-05294-6.
[47]
BUTCHER S C, VOS J L, FORTUNI F, et al. Evaluation of left cardiac chamber function with cardiac magnetic resonance and association with outcome in patients with systemic sclerosis[J/OL]. Rheumatology (Oxford), 2023, 62(SI): SI20-SI31 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35482539/. DOI: 10.1093/rheumatology/keac256.
[48]
SHAH M, SHINJO S K, DAY J, et al. Cardiovascular manifestations in idiopathic inflammatory myopathies[J]. Clin Rheumatol, 2023, 42(10): 2557-2575. DOI: 10.1007/s10067-023-06599-4.
[49]
MONDAL S, BARMAN P, VIGNESH P. Cardiovascular abnormalities in juvenile dermatomyositis: a scoping review for the clinical rheumatologists[J/OL]. Front Med, 2022, 9: 827539 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/35814777/. DOI: 10.3389/fmed.2022.827539.
[50]
KERSTEN J, GÜLEROGLU A M, ROSENBOHM A, et al. Myocardial involvement and deformation abnormalities in idiopathic inflammatory myopathy assessed by CMR feature tracking[J]. Int J Cardiovasc Imaging, 2021, 37(2): 597-603. DOI: 10.1007/s10554-020-02020-2.
[51]
LIU W Y, ZHU Y S, FENG C J, et al. Early cardiac involvement detected by cardiac magnetic resonance feature tracking in idiopathic inflammatory myopathy with preserved ejection fraction[J]. Int J Cardiovasc Imaging, 2023, 39(1): 183-194. DOI: 10.1007/s10554-022-02715-8.
[52]
KORTHALS D, BIETENBECK M, KÖNEMANN H, et al. Cardiac sarcoidosis-diagnostic and therapeutic challenges[J/OL]. J Clin Med, 2024, 13(6): 1694 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38541919/. DOI: 10.3390/jcm13061694.
[53]
STEVENSON A, BRAY J J H, TREGIDGO L, et al. Prognostic value of late GadoliniumEnhancement detected onCardiac magnetic resonance in cardiac sarcoidosis[J]. JACC Cardiovasc Imag, 2023, 16(3): 345-357. DOI: 10.1016/j.jcmg.2022.10.018.
[54]
DABIR D, MEYER D, KUETTING D, et al. Diagnostic value of cardiac magnetic resonance strain analysis for detection of cardiac sarcoidosis[J]. Rofo, 2018, 190(8): 712-721. DOI: 10.1055/a-0598-5099.
[55]
VARGHESE B, ZGHAIB T, XIE E, et al. Right ventricular longitudinal strain on CMR predicts ventricular arrhythmias and mortality in cardiac sarcoidosis[J/OL]. Am Heart J Plus, 2022, 22: 100209 [2024-04-19]. https://pubmed.ncbi.nlm.nih.gov/38558901/. DOI: 10.1016/j.ahjo.2022.100209.
[56]
BOND M, FAGNI F, MORETTI M, et al. At the heart of eosinophilic granulomatosis with polyangiitis: into cardiac and vascular involvement[J]. Curr Rheumatol Rep, 2022, 24(11): 337-351. DOI: 10.1007/s11926-022-01087-1.
[57]
BELHASSEN A, TOUJANI S, OUNI A E, et al. Characteristics of cardiac involvement in eosinophilic granulomatosis with polyangiitis[J]. Ann Cardiol Angeiol, 2022, 71(2): 95-98. DOI: 10.1016/j.ancard.2020.12.002.
[58]
MISZALSKI-JAMKA T, SZCZEKLIK W, SOKOŁOWSKA B, et al. Standard and feature tracking magnetic resonance evidence of myocardial involvement in Churg-Strauss syndrome and granulomatosis with polyangiitis (Wegener's) in patients with normal electrocardiograms and transthoracic echocardiography[J]. Int J Cardiovasc Imag, 2013, 29(4): 843-853. DOI: 10.1007/s10554-012-0158-6.
[59]
MEDINA G, GÓMEZ-BAÑUELOS E, CALDERÓN-ARANDA E, et al. Myocardial function in primary antiphospholipid syndrome using speckle-tracking echocardiography[J]. Clin Rheumatol, 2018, 37(12): 3351-3358. DOI: 10.1007/s10067-018-4088-0.
[60]
AGHDASHI M A, MIKAEILVAND A, ANSARI-RAMANDI M M, et al. Speckle tracking echocardiography in patients with ankylosing spondylitis and evaluation of subclinical involvement[J]. Mediterr J Rheumatol, 2023, 34(3): 322-326. DOI: 10.31138/mjr.20230724.ei.

PREV Research progress of conventional MRI characteristics in prognostic prediction of nasopharyngeal carcinoma
NEXT Research progress of artificial intelligence in imaging evaluation of rheumatoid arthritis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn