Share:
Share this content in WeChat
X
Special Focu
Progress and prospect of advanced MRI techniques and their applications in brain development and brain injury
LI Xianjun  DONG Suzhen  YANG Jian 

Cite this article as: LI X J, DONG S Z, YANG J. Progress and prospect of advanced MRI techniques and their applications in brain development and brain injury[J]. Chin J Magn Reson Imaging, 2024, 15(9): 1-5. DOI:10.12015/issn.1674-8034.2024.09.001.


[Abstract] The study of brain development and injury is the basis for understanding the maturation pattern and ensuring the healthy development of children. MRI is an important method for assessing brain development and injuries. Recently, the pediatric-suitable MRI techniques have been continuously updated. Importantly, the application of artificial intelligence further improves the applicability of MRI in pediatric. In this work, novel imaging techniques and processing methods, including artificial intelligence accelerated imaging, motion artifact elimination, distortion correction, pediatric-suitable quantitative analysis of brain morphology and function, are reviewed. The application values of these techniques in revealing the law of brain development and the pathophysiological mechanisms of brain injury are briefly discussed. Meanwhile, the problems existing in the application of some of the methods are pointed out. It is expected that this work can inspire new perspectives for further expanding the application of brain imaging techniques in pediatrics, and provide a reference for the selection of early assessment tools for pediatric disorders. It is hoped that more researches can work together to promote the ability of pediatric-appropriate MRI technique development and clinical applications. These will be helpful for improving the ability of diagnosis and treatment of pediatric disorders.
[Keywords] brain development;brain injury;magnetic resonance imaging;imaging technique;post-processing method

LI Xianjun1, 2   DONG Suzhen3   YANG Jian1, 2*  

1 Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

2 Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an 710061, China

3 Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

Corresponding author: YANG J, E-mail: yj1118@mail.xjtu.edu.cn

Conflicts of interest   None.

Received  2024-03-25
Accepted  2024-07-12
DOI: 10.12015/issn.1674-8034.2024.09.001
Cite this article as: LI X J, DONG S Z, YANG J. Progress and prospect of advanced MRI techniques and their applications in brain development and brain injury[J]. Chin J Magn Reson Imaging, 2024, 15(9): 1-5. DOI:10.12015/issn.1674-8034.2024.09.001.

[1]
REN J Y, ZHU M, DONG S Z. Three-dimensional volumetric magnetic resonance imaging detects early alterations of the brain growth in fetuses with congenital heart disease[J]. J Magn Reson Imaging, 2021, 54(1): 263-272. DOI: 10.1002/jmri.27526.
[2]
DONG S Z, ZHU M, BULAS D. Techniques for minimizing sedation in pediatric MRI[J]. J Magn Reson Imaging, 2019, 50(4): 1047-1054. DOI: 10.1002/jmri.26703.
[3]
LIU K, XI B, SUN H, et al. The clinical feasibility of artificial intelligence-assisted compressed sensing single-shot fluid-attenuated inversion recovery (ACS-SS-FLAIR) for evaluation of uncooperative patients with brain diseases: comparison with the conventional T2-FLAIR with parallel imaging[J]. Acta Radiol, 2023, 64(5): 1943-1949. DOI: 10.1177/02841851221139125.
[4]
KIM S H, CHOI Y H, LEE J S, et al. Deep learning reconstruction in pediatric brain MRI: comparison of image quality with conventional T2-weighted MRI[J]. Neuroradiology, 2023, 65(1): 207-214. DOI: 10.1007/s00234-022-03053-1.
[5]
HOSSAIN M B, SHINDE R K, OH S, et al. A systematic review and identification of the challenges of deep learning techniques for undersampled magnetic resonance image reconstruction[J/OL]. Sensors (Basel), 2024, 24(3): 753 [2024-03-25]. https://www.mdpi.com/1424-8220/24/3/753. DOI: 10.3390/s24030753.
[6]
HUNG S C, CHEN Y, YAP P T, et al. Magnetic resonance fingerprinting of the pediatric brain[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 605-616. DOI: 10.1016/j.mric.2021.06.010.
[7]
CHEN Y, CHEN M H, BALUYOT K R, et al. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life[J]. Neuroimage, 2019, 186: 782-793. DOI: 10.1016/j.neuroimage.2018.11.038.
[8]
YE Y, LYU J, HU Y, et al. MULTI-parametric MR imaging with fLEXible design (MULTIPLEX)[J]. Magn Reson Med, 2022, 87(2): 658-673. DOI: 10.1002/mrm.28999.
[9]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the neonatal brain: A review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[10]
HUANG Y, ZHANG X, GUO H, et al. Phase-constrained reconstruction of high-resolution multi-shot diffusion weighted image[J/OL]. J Magn Reson, 2020, 312: 106690 [2024-03-25]. https://linkinghub.elsevier.com/retrieve/pii/S1090-7807(20)30008-2. DOI: 10.1016/j.jmr.2020.106690.
[11]
CHEN H, DAI K, ZHONG S, et al. High-resolution multi-shot diffusion-weighted MRI combining markerless prospective motion correction and locally low-rank constrained reconstruction[J]. Magn Reson Med, 2023, 89(2): 605-619. DOI: 10.1002/mrm.29468.
[12]
HOWELL B R, STYNER M A, GAO W, et al. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development[J]. Neuroimage, 2019, 185: 891-905. DOI: 10.1016/j.neuroimage.2018.03.049.
[13]
KUNDU P, VOON V, BALCHANDANI P, et al. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals[J]. Neuroimage, 2017, 154: 59-80. DOI: 10.1016/j.neuroimage.2017.03.033.
[14]
LI Y, WANG T, ZHANG T, et al. Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy[J]. Brain, 2020, 143(11): 3225-3233. DOI: 10.1093/brain/awaa264.
[15]
RÖSCH J, OTT M, HEISMANN B, et al. Quiet diffusion-weighted head scanning: Initial clinical evaluation in ischemic stroke patients at 1.5T[J]. J Magn Reson Imaging, 2016, 44(5): 1238-1243. DOI: 10.1002/jmri.25228.
[16]
DAMESTANI N L, O'DALY O, SOLANA A B, et al. Revealing the mechanisms behind novel auditory stimuli discrimination: An evaluation of silent functional MRI using looping star[J]. Hum Brain Mapp, 2021, 42(9): 2833-2850. DOI: 10.1002/hbm.25407.
[17]
MATSUO-HAGIYAMA C, WATANABE Y, TANAKA H, et al. Comparison of silent and conventional MR imaging for the evaluation of myelination in children[J]. Magn Reson Med Sci, 2017, 16(3): 209-216. DOI: 10.2463/mrms.mp.2016-0045.
[18]
ZÖLLEI L, IGLESIAS J E, OU Y, et al. Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0-2 years[J/OL]. Neuroimage, 2020, 218: 116946 [2024-03-25]. https://linkinghub.elsevier.com/retrieve/pii/S1053-8119(20)30432-8. DOI: 10.1016/j.neuroimage.2020.116946.
[19]
WANG L, WU Z, CHEN L, et al. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction[J]. Nat Protoc, 2023, 18(5): 1488-1509. DOI: 10.1038/s41596-023-00806-x.
[20]
GAO Y, LI J, XU H, et al. A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI[J]. Magn Reson Imaging, 2019, 63: 70-79. DOI: 10.1016/j.mri.2019.08.025.
[21]
LI X J, CHEN J, XIA J, et al. Quantitative evaluation of the cortical development on neonates based on segmentation of 3D T1WI images using transfer learning[J]. Chin J Magn Reson Imaging, 2019, 10(10): 736-742. DOI: 10.12015/issn.1674-8034.2019.10.004.
[22]
SUN L, ZHANG D, LIAN C, et al. Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network[J]. Neuroimage, 2019, 198: 114-124. DOI: 10.1016/j.neuroimage.2019.05.037.
[23]
GLASSER M F, VAN ESSEN D C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI[J]. J Neurosci, 2011, 31(32): 11597-11616. DOI: 10.1523/JNEUROSCI.2180-11.2011.
[24]
NORBOM L B, ROKICKI J, ALNAES D, et al. Maturation of cortical microstructure and cognitive development in childhood and adolescence: A T1w/T2w ratio MRI study[J]. Hum Brain Mapp, 2020, 41(16): 4676-4690. DOI: 10.1002/hbm.25149.
[25]
GANZETTI M, WENDEROTH N, MANTINI D. Whole brain myelin mapping using T1- and T2-weighted MR imaging data[J/OL]. Front Hum Neurosci, 2014, 8: 671 [2024-03-25]. https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2014.00671/full. DOI: 10.3389/fnhum.2014.00671.
[26]
SMITH S M, JENKINSON M, JOHANSEN-BERG H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage, 2006, 31(4): 1487-1505. DOI: 10.1016/j.neuroimage.2006.02.024.
[27]
WANG W, YU Q, LIANG W, et al. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates[J]. Cereb Cortex, 2023, 33(3): 651-662. DOI: 10.1093/cercor/bhac091.
[28]
OUYANG M, JEON T, SOTIRAS A, et al. Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging[J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4681-4688. DOI: 10.1073/pnas.1812156116.
[29]
BALL G, SRINIVASAN L, ALJABAR P, et al. Development of cortical microstructure in the preterm human brain[J]. Proc Natl Acad Sci U S A, 2013, 110(23): 9541-9546. DOI: 10.1073/pnas.1301652110.
[30]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[31]
LI X, LIN Z, LIU C, et al. Glymphatic imaging in pediatrics[J]. J Magn Reson Imaging, 2024, 59(5):1523-1541. DOI: 10.1002/jmri.29040.
[32]
CHEN Y, WANG M, SU S, et al. Assessment of the glymphatic function in children with attention-deficit/hyperactivity disorder[J]. Eur Radiol, 2024, 34(3): 1444-1452. DOI: 10.1007/s00330-023-10220-2.
[33]
YIN Y, PENG Y, NIE L, et al. Impaired glymphatic system revealed by DTI-ALPS in cerebral palsy due to periventricular leukomalacia: relation with brain lesion burden and hand dysfunction[J]. Neuroradiology, 2024, 66(2): 261-269. DOI: 10.1007/s00234-023-03269-9.
[34]
RINGSTAD G. Glymphatic imaging: a critical look at the DTI-ALPS index[J]. Neuroradiology, 2024, 66(2): 157-160. DOI: 10.1007/s00234-023-03270-2.
[35]
LIU Y, LI J, WANG Y, et al. Refined Segmentation R-CNN: A two-stage convolutional neural network for punctate white matter lesion segmentation in preterm infants [M]//SHEN D, LIU T, PETERS T M, et al. Medical image computing and computer assisted intervention-MICCAI2019. Cham; Springer International Publishing. 2019: 193-201. DOI: 10.1007/978-3-030-32248-9_22.
[36]
REN Z, SUN Y, WANG M, et al. Punctate white matter lesion segmentation in preterm infants powered by counterfactually generative learning [M]//GREENSPAN H, MADABHUSHI A, MOUSAVI P, et al. Medical image computing and computer assisted intervention-MICCAI2023. Cham; Springer Nature Switzerland. 2023: 220-229. DOI: 10.1007/978-3-031-43904-9_22.
[37]
WANG Z, HUANG T, XIAO B, et al. Self-guided multi-attention network for periventricular leukomalacia recognition [M]//REKIK I, ADELI E, PARK S H, et alPredictive intelligence in medicine. Cham; Springer International Publishing. 2021: 128-137. DOI: 10.1007/978-3-030-87602-9_12.
[38]
ZHANG H, SHEN D, LIN W. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts[J]. Neuroimage, 2019, 185: 664-684. DOI: 10.1016/j.neuroimage.2018.07.004.
[39]
FRANÇA L G S, CIARRUSTA J, GALE-GRANT O, et al. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment[J/OL]. Nat Commun, 2024, 15(1): 16 [2024-03-25]. https://pubmed.ncbi.nlm.nih.gov/38331941/. DOI: 10.1038/s41467-023-44050-z.
[40]
WANG F, ZHANG H, WU Z, et al. Fine-grained functional parcellation maps of the infant cerebral cortex[J/OL]. Elife, 2023, 12: e75401 [2024-03-25]. https://elifesciences.org/articles/75401. DOI: 10.7554/eLife.75401.

PREV
NEXT Evaluation of glymphatic system activity and disease state by diffusion tensor image analysis along the perivascular space index in children with benign Rolandic epilepsy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn