Share:
Share this content in WeChat
X
Special Focu
Evaluation of glymphatic system activity and disease state by diffusion tensor image analysis along the perivascular space index in children with benign Rolandic epilepsy
GAO Lu  ZHANG Na  WANG Xiaoyu  FENG Yuying  LI Xianjun  BIAN Yitong  LIU Zhe  YANG Jian 

Cite this article as: GAO L, ZHANG N, WANG X Y, et al. Evaluation of glymphatic system activity and disease state by diffusion tensor image analysis along the perivascular space index in children with benign Rolandic epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(9): 6-10. DOI:10.12015/issn.1674-8034.2024.09.002.


[Abstract] Objective To investigate the value of diffusion tensor image analysis along the perivascular space index (DTI-ALPS index) on glymphatic system (GS) activity and disease state in children with benign Rolandic epilepsy (RE).Materials and Methods Twenty patients aged 6-12 years with RE and 20 children matched in gender and age underwent conventional MRI and diffusion tensor imaging (DTI). Quantitative analysis DTI-ALPS index between two groups. Meanwhile, correlation of DTI-ALPS index with seizure duration, epileptic frequency and cognitive development were respectively explored via Pearson's coefficient (r).Results Compared with control group, DTI-ALPS index was higher in control group than patient group (RE: 1.41±0.20, Control: 1.56±0.16; t=-2.620, P=0.013). DTI-ALPS index positively correlated with age (r_patient=0.483, P=0.002; r_control=0.534, P<0.001), full intelligence quotient (FIQ) and verbal intelligence quotient (VIQ) (r_FIQ=0.523, P=0.014; r_VIQ=0.563, P=0.001). However, DTI-ALPS index gradually decreased with seizure duration and epileptic frequency (r_seizure duration=-0.743, P<0.001; r_epileptic frequency=-0.460, P=0.044). There was no significant associations between DTI-ALPS index and practical intelligence quotient (PIQ).Conclusions DTI-ALPS index can be used to evaluated impairment of the GS in RE, which has a good prospect for exploring the state of RE.
[Keywords] benign Rolandic epilepsy;glymphatic system;magnetic resonance imaging;diffusion tensor imaging, perivascular space

GAO Lu   ZHANG Na   WANG Xiaoyu   FENG Yuying   LI Xianjun   BIAN Yitong   LIU Zhe   YANG Jian*  

Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

Corresponding author: YANG J, E-mail: yj1118@xjtu.edu.cn

Conflicts of interest   None.

Received  2023-11-29
Accepted  2024-02-26
DOI: 10.12015/issn.1674-8034.2024.09.002
Cite this article as: GAO L, ZHANG N, WANG X Y, et al. Evaluation of glymphatic system activity and disease state by diffusion tensor image analysis along the perivascular space index in children with benign Rolandic epilepsy[J]. Chin J Magn Reson Imaging, 2024, 15(9): 6-10. DOI:10.12015/issn.1674-8034.2024.09.002.

[1]
THIJS R D, SURGES R, O'BRIEN T J, et al. Epilepsy in adults[J]. Lancet, 2019, 393(10172): 689-701. DOI: 10.1016/S0140-6736(18)32596-0.
[2]
DING D, ZHOU D, SANDER J W, et al. Epilepsy in China: major progress in the past two decades[J]. Lancet Neurol, 2021, 20(4): 316-326. DOI: 10.1016/S1474-4422(21)00023-5.
[3]
PARISI P, PAOLINO M C, RAUCCI U, et al. vAtypical forms" of benign epilepsy with centrotemporal spikes (BECTS): How to diagnose and guide these children. A practical/scientific approach[J]. Epilepsy Behav, 2017, 75: 165-169. DOI: 10.1016/j.yebeh.2017.08.001.
[4]
KARIUKI S M, THOMAS P T, NEWTON C R. Epilepsy stigma in children in low-income and middle-income countries[J]. Lancet Child Adolesc Health, 2021, 5(5): 314-316. DOI: 10.1016/S2352-4642(21)00090-0.
[5]
DRYŻAŁOWSKI P, JÓŹWIAK S, FRANCKIEWICZ M, et al. Benign epilepsy with centrotemporal spikes - Current concepts of diagnosis and treatment[J]. Neurol Neurochir Pol, 2018, 52(6): 677-689. DOI: 10.1016/j.pjnns.2018.08.010.
[6]
JURKEVIČIENĖ G, ENDZINIENĖ M, LAUKIENĖ I, et al. Association of language dysfunction and age of onset of benign epilepsy with centrotemporal spikes in children[J]. Eur J Paediatr Neurol, 2012, 16(6): 653-661. DOI: 10.1016/j.ejpn.2012.03.011.
[7]
NORDLI D, XIAO F, ZHOU D. Real-time effects of centrotemporal spikes on cognition in Rolandic epilepsy: An EEG-fMRI study[J/OL]. Neurology, 2016, 87(5): 552 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/26747882/. DOI: 10.1212/WNL.0000000000002358.
[8]
RASMUSSEN M K, MESTRE H, NEDERGAARD M. The glymphatic pathway in neurologi- cal disorders[J]. Lancet Neurol, 2018, 17(11): 1016-1024. DOI: 10.1016/S1474-4422(18)30318-1.
[9]
RINGSTAD G, VATNEHOL S A S, EIDE P K. Glymphatic MRI in idiopathic normal pressure hydrocephalus[J]. Brain , 2017, 140(10): 2691-2705. DOI: 10.1093/brain/awx191.
[10]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[11]
BAE Y J, CHOI B S, KIM J M, et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus[J]. Parkinsonism Relat Disord, 2021, 82: 56-60. DOI: 10.1016/j.parkreldis.2020.11.009.
[12]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/34118396/. DOI: 10.1016/j.neuroimage.2021.118257.
[13]
SCHEFFER IE, BERKOVIC S, CAPOVILLA G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521. DOI: 10.1111/epi.13709.
[14]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[15]
GORTER J A, VAN VLIET E A, ARONICA E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis[J]. Epilepsy Behav, 2015, 49: 13-16. DOI: 10.1016/j.yebeh.2015.04.047.
[16]
ABBOTT N J, RÖNNBÄCK L, HANSSON E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nat Rev Neurosci, 2006, 7(1): 41-53. DOI: 10.1038/nrn1824.
[17]
GIROUARD H, IADECOLA C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease[J]. J Appl Physiol (1985), 2006, 100(1): 328-335. DOI: 10.1152/japplphysiol.00966.2005.
[18]
FELDMAN R E, RUTLAND J W, FIELDS M C, et al. Quantification of perivascular spaces at 7T: A potential MRI biomarker for epilepsy[J]. Seizure, 2018, 54: 11-18. DOI: 10.1016/j.seizure.2017.11.004.
[19]
HANAEL E, VEKSLER R, FRIEDMAN A, et al. Blood-brain barrier dysfunction in canine epileptic seizures detected by dynamic contrast-enhanced magnetic resonance imaging[J]. Epilepsia, 2019, 60(5): 1005-1016. DOI: 10.1111/epi.14739.
[20]
LIU C, HABIB T, SALIMEEN M, et al. Quantification of visible virchow-robin spaces for detecting the functional status of the glymphatic system in children with newly diagnosed idiopathic generalized epilepsy[J]. Seizure, 2020, 78: 12-17. DOI: 10.1016/j.seizure.2020.02.015.
[21]
ZHANG C, XU K, ZHANG H, et al. Recovery of glymphatic system function in patients with temporal lobe epilepsy after surgery[J]. Eur Radiol, 2023, 33(9): 6116-6123. DOI: 10.1007/s00330-023-09588-y.
[22]
LEE D A, PARK B S, KO J, et al. Glymphatic system dysfunction in temporal lobe epilepsy patients with hippocampal sclerosis[J]. Epilepsia Open, 2022, 7(2): 306-314. DOI: 10.1002/epi4.12594.
[23]
LEE H J, LEE D A, SHIN K J, et al. Glymphatic system dysfunction in patients with juvenile myoclonic epilepsy[J]. J Neurol, 2022, 269(4): 2133-2139. DOI: 10.1007/s00415-021-10799-w.
[24]
TANG J, ZHANG M, LIU N, et al. The association between glymphatic system dysfunction and cognitive impairment in cerebral small vessel disease[J/OL]. Front Aging Neurosci, 2022, 14: 916633 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35813943/. DOI: 10.3389/fnagi.2022.916633.
[25]
TAOKA T, ITO R, NAKAMICHI R, et al. Diffusion-weighted image analysis along the perivascular space (DWI-ALPS) for evaluating interstitial fluid status: age depend- ence in normal subjects[J]. Jpn J Radiol. 2022, 40(9): 894-902. DOI: 10.1007/s11604-022-01275-0.
[26]
MARCHANT N L, LOVLAND L R, JONES R, et al. Repetitive negative thinking is associated with amyloid, tau, and cognitive decline[J]. Alzheimers Dement, 2020, 16(7): 1054-1064. DOI: 10.1002/alz.12116.
[27]
SAUNDERS N R, LIDDELOW S A, DZIEGIELEWSKA K M. Barrier mechanisms in the developing brain[J/OL]. Front Pharmacol, 2012, 3: 46 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/22479246/. DOI: 10.3389/fphar.2012.00046.
[28]
JIANG F. Sleep and early brain development[J]. Ann Nutr Metab, 2019, 75(Suppl 1): 44-54. DOI: 10.1159/000508055.
[29]
NEDERGAARD M, GOLDMAN S A. Glymphatic failure as a final common pathway to dementia[J]. Science, 2020, 370(6512): 50-56. DOI: 10.1126/science.abb8739.
[30]
WANG S, LONG C M, GONG Z W, et al. Effect of sleep on brain clearing metabolites: thinking based on lymphoid system[J]. Chin J Neurosurg, 2023, 56(1): 101-105. DOI: 10.3760/cma.j.cn113694-20220425-00332.

PREV Progress and prospect of advanced MRI techniques and their applications in brain development and brain injury
NEXT Application of grey matter-based spatial statistical analysis methods in neonatal cerebral cortical development
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn