Share:
Share this content in WeChat
X
Special Focu
Lateralization of brain volume in term newborns based on MR structural imaging
BAI Pengxuan  FENG Yuying  ZHU Linlin  LIU Congcong  XIA Yuwei  SHI Feng  LI Xianjun  JIN Chao  YANG Jian  ZHAO Huifang 

Cite this article as: BAI P X, FENG Y Y, ZHU L L, et al. Lateralization of brain volume in term newborns based on MR structural imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 18-22, 28. DOI:10.12015/issn.1674-8034.2024.09.004.


[Abstract] Objective To explore the volumetric lateralization characteristics in 87 distinct brain regions of term newborns and the correlation between lateralization and neurobehavior, utilizing T1-weighted MR structural imaging.Materials and Methods A retrospective analysis was conducted on 64 healthy full-term newborns who underwent cranial MRI (3D T1WI) at the First Affiliated Hospital of Xi'an Jiaotong University from November 2010 to September 2017. The subjects had an average gestational age of (39.46±1.17) weeks, male/female distribution of 43/21, and average postnatal age of (10.94±6.90) days. Employing deep learning segmentation techniques based on the Developing Human Connectome Project (dHCP) template within the uAI Research Portal, we acquired volumetric data for 87 neonatal brain regions. Subsequently, the lateralization index (LI) was computed as: LI=100×(VL-VR)/(VL+VR), (V: volume). Statistical analysis involved t-tests and Pearson's partial correlation to explore the volumetric laterality patterns across brain regions and the correlation between LI and neurobehavior.Results Analysis revealed left-sided bias (LI>0) in brain region volumes during the neonatal phase, primarily located in the occipital lobe, thalamus, caudate nucleus, lateral ventricles and cerebellum. Conversely, right-sided bias (LI<0) mainly distributed in the hippocampus, cingulate gyrus, temporal lobe and insula white matter. Among them, there was a correlation between LI and active muscle tone scores in occipital white matter (r=-0.303, P=0.015), occipital gray matter (r=-0.315, P=0.012), hippocampus (r=-0.332, P<0.01) and posterior cingulate white matter (r=-0.263, P=0.035). However, no significant correlation was found between LI and behavioral ability scores in any brain region.Conclusions The neonatal period manifests substantial lateralization characteristics in brain region volumes, characterized by a widespread distribution of lateralized brain volumes and a predominantly right-sided bias. Meanwhile, active muscle tone predominantly localizes to the right hemisphere in both gray and white matter of the occipital lobe, the hippocampus, and the posterior white matter of the cingulate gyrus.
[Keywords] full-term neonates;structural asymmetry;active muscle tone;magnetic resonance imaging

BAI Pengxuan1, 2   FENG Yuying1, 2   ZHU Linlin1, 2   LIU Congcong1, 2   XIA Yuwei3   SHI Feng3   LI Xianjun1, 2   JIN Chao1, 2   YANG Jian1, 2*   ZHAO Huifang1, 2*  

1 Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

2 Shaanxi Engineering Research Center of Computational lmaging and Medical lntelligence, Xi'an 710061, China

3 Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China

Corresponding author: ZHAO H F, E-mail: zhaohf810@163.com YANG J, E-mail: yj1118@mail.xjtu.edu.cn

Conflicts of interest   None.

Received  2023-08-29
Accepted  2024-03-15
DOI: 10.12015/issn.1674-8034.2024.09.004
Cite this article as: BAI P X, FENG Y Y, ZHU L L, et al. Lateralization of brain volume in term newborns based on MR structural imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 18-22, 28. DOI:10.12015/issn.1674-8034.2024.09.004.

[1]
CORBALLIS M C, and HABERLING I S. The many sides of hemispheric asymmetry: A selective review and outlook[J]. J Int Neuropsychol Soc, 2017, 23(9-10): 710-718. DOI: 10.1017/S1355617717000376.
[2]
BEATON A A. The lateralized brain: the neuroscience and evolution of hemispheric asymmetries[J]. Laterality, 2018: 1-4. DOI: 10.1080/1357650X.2018.1499749.
[3]
HIRNSTEIN M, HUGDAHL K, HAUSMANN M. Cognitive sex differences and hemispheric asymmetry: A critical review of 40 years of research[J]. Laterality, 2019, 24(2): 204-252. DOI: 10.1080/1357650X.2018.1497044.
[4]
KUO F, MASSOUD T F. Structural asymmetries in normal brain anatomy: A brief overview[J/OL]. Ann Anat, 2022, 241: 151894 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/35085705/. DOI: 10.1016/j.aanat.2022.151894.
[5]
TURNER B O, MARINSEK N, RYHAL E, et al. Hemispheric lateralization in reasoning[J]. Ann N Y Acad Sci, 2015, 1359: 47-64. DOI: 10.1111/nyas.12940.
[6]
GÜNTÜRKÜN O, STRÖCKENS F, OCKLENBURG S. Brain lateralization: A comparative perspective[J]. Physiol Rev, 2020, 100(3): 1019-1063. DOI: 10.1152/physrev.00006.2019.
[7]
GÜNTÜRKÜN O, OCKLENBURG S. Ontogenesis of lateralization[J]. Neuron, 2017, 94(2): 249-263. DOI: 10.1016/j.neuron.2017.02.045.
[8]
MACHADO-RIVAS F, GANDHI J, CHOI J J, et al. Normal growth, sexual dimorphism, and lateral asymmetries at fetal brain MRI[J]. Radiology, 2022, 303(1): 162-170. DOI: 10.1148/radiol.211222.
[9]
VASUNG L, ROLLINS C K, YUN H J, et al. Quantitative in vivo MRI assessment of structural asymmetries and sexual dimorphism of transient fetal compartments in the human brain[J]. Cereb Cortex, 2020, 30(3): 1752-1767. DOI: 10.1093/cercor/bhz200.
[10]
BISIACCHI P, CAINELLI E. Structural and functional brain asymmetries in the early phases of life: a scoping review[J]. Brain Struct Funct, 2022, 227(2): 479-496. DOI: 10.1007/s00429-021-02256-1.
[11]
XIAO B, CHENG X Q, LI Q F, et al. Weakly supervised confidence learning for brain MR image dense parcellation[C/OL]. in 10th International Workshop on Machine Learning in Medical Imaging (MLMI) 2019. Lecture Notes in Computer Science(), vol 11861. Springer, Cham. https://doi.org/10.1007/978-3-030-32692-0_47. DOI: 10.1007/978-3-030-32692-0_47.
[12]
WEI J, SHI F, CUI Z M, et al. Consistent segmentation of longitudinal brain MR images with spatio-temporal constrained networks[C/OL]. in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_9. DOI: 10.1007/978-3-030-87193-2_9.
[13]
WU J, XIA Y, WANG X, et al. uRP: An integrated research platform for one-stop analysis of medical images[J/OL]. Front Radiol, 2023. 3: 1153784 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/37492386/. DOI: 10.3389/fradi.2023.1153784.
[14]
SCHUH A, MAKROPOULOS A, ROBINSON E C, et al. Unbiased construction of a temporally consistent morphological atlas of neonatal brain development[J/OL]. BioRxiv, 2018 [2023-08-29]. https://www.biorxiv.org/content/10.1101/251512v3. DOI: 10.1101/251512.
[15]
HUA R, HUO Q, GAO Y, et al. Segmenting Brain Tumor Using Cascaded V-Nets in Multimodal MR Images[J/OL]. Front Comput Neurosci, 2020, 14: 9 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/32116623/. DOI: 10.3389/fncom.2020.00009.
[16]
SHI F, HU W, WU J, et al. Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy[J/OL]. Nat Commun, 2022. 13(1): 6566 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/36323677/. DOI: 10.1038/s41467-022-34257-x.
[17]
BAO X L. Neonatal Behavioral Skills and Measurements[J]. Journal of Practical Diagnosis and Therapy, 2003(6): 441-443.
[18]
DEAN D C, PLANALP E M, WOOTEN W, et al. Investigation of brain structure in the 1-month infant[J]. Brain Struct Funct, 2018, 223(4): 1953-1970. DOI: 10.1007/s00429-017-1600-2.
[19]
TZOURIO-MAZOYER N, ZAGO L, COCHET H, et al. Development of handedness, anatomical and functional brain lateralization[J]. Handb Clin Neurol, 2020, 173: 99-105. DOI: 10.1016/B978-0-444-64150-2.00011-3.
[20]
LEHTOLA S J, TUULARI J J, KARLSSON L, et al. Associations of age and sex with brain volumes and asymmetry in 2-5-week-old infants[J]. Brain Struct Funct, 2019, 224(1): 501-513. DOI: 10.1007/s00429-018-1787-x.
[21]
TANAKA C, MATSUI M, UEMATSU A, et al. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals[J]. Dev Neurosci, 2012, 34(6): 477-87. DOI: 10.1159/000345152.
[22]
JAVED K, REDDY V, DAS J M, et al. Neuroanatomy, Wernicke Area[EB/OL]. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK533001/.
[23]
WONG C, GALLATE J. The function of the anterior temporal lobe: a review of the empirical evidence[J]. Brain Res, 2012. 1449: 94-116. DOI: 10.1016/j.brainres.2012.02.017.
[24]
KEUNEN K, VAN DER BURGH H K, DE REUS M A, et al. Early human brain development: insights into macroscale connectome wiring[J]. Pediatr Res, 2018, 84(6): 829-836. DOI: 10.1038/s41390-018-0138-1.
[25]
VANNUCCI R C, HEIER L A, VANNUCCI S J. Cerebral asymmetry during development using linear measures from MRI[J/OL]. Early Hum Dev, 2019, 139: 104853 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/31473466/. DOI: 10.1016/j.earlhumdev.2019.104853.
[26]
ZHAO L, MATLOFF W, SHI Y, et al. Mapping complex brain torque components and their genetic architecture and phenomic associations in 24, 112 individuals[J]. Biol Psychiatry, 2022, 91(8): 753-768. DOI: 10.1016/j.biopsych.2021.11.002.
[27]
DUBOIS J, DEHAENE-LAMBERTZ G, KULIKOVA S, et al. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants[J]. Neuroscience, 2014, 276: 48-71. DOI: 10.1016/j.neuroscience.2013.12.044.
[28]
SOTARDI S, GOLLUB R L, BATES S V, et al. Voxelwise and regional brain apparent diffusion coefficient changes on MRI from birth to 6 years of age[J]. Radiology, 2021, 298(2): 415-424. DOI: 10.1148/radiol.2020202279.
[29]
RATNARAJAH N, RIFKIN-GRABOI A, FORTIER M V, et al. Structural connectivity asymmetry in the neonatal brain[J]. Neuroimage, 2013, 75: 187-194. DOI: 10.1016/j.neuroimage.2013.02.052.
[30]
CELIK N G, TIRYAKI S. Changes in the volumes and asymmetry of subcortical structures in healthy individuals according to gender[J]. Anat Sci Int, 2023, 98(4): 506-519. DOI: 10.1007/s12565-023-00714-w.
[31]
SHINE J M. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics[J/OL]. Progress in Neurobiology, 2021, 199: 101951 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/33189781/. DOI: 10.1016/j.pneurobio.2020.101951.
[32]
DONATO F, ALBERINI C M, AMSO D, et al. The ontogeny of hippocampus-dependent memories[J]. J Neurosci, 2021. 41(5): 920-926. DOI: 10.1523/JNEUROSCI.1651-20.2020.
[33]
ZHANG R T, LI D P, XIA X J, et al. Application of MRI to investigate the effect of age on the lateralization of subcortical nuclei[J]. J Med Imaging, 2022, 32(6): 924-927.
[34]
MODRELL A K, TADI P. Primitive reflexes[EB/OL]. DOI: . Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK554606/.
[35]
FUTAGI Y, TORIBE Y, SUZUKI Y. The grasp reflex and moro reflex in infants: Hierarchy of primitive reflex responses[J]. Int J Pediatr, 2012, 2012: 1-10. DOI: 10.1155/2012/191562.
[36]
RACHWANI J, HERZBERG O, GOLENIA L, et al. Postural, visual, and manual coordination in the development of prehension[J]. Child Dev, 2019, 90(5): 1559-1568. DOI: 10.1111/cdev.13282.
[37]
ALQADAH A, HSIEH Y W, MORRISSEY Z D, et al. Asymmetric development of the nervous system[J]. Dev Dyn, 2018, 247(1): 124-137. DOI: 10.1002/dvdy.24595.
[38]
MUNDORF A, PETERBURS J, OCKLENBURG S. Asymmetry in the central nervous system: A clinical neuroscience perspective[J/OL]. Front Syst Neurosci, 2021, 15: 733898 [2023-08-29]. https://pubmed.ncbi.nlm.nih.gov/34970125/. DOI: 10.3389/fnsys.2021.733898.
[39]
BERRETZ G, WOLF O T, GÜNTÜRKÜN O, et al. Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress?[J]. Cortex, 2020, 125: 215-232. DOI: 10.1016/j.cortex.2019.12.019.

PREV Application of grey matter-based spatial statistical analysis methods in neonatal cerebral cortical development
NEXT Evaluation of spatiotemporal distribution of neonatal punctate white matter lesions based on probabilistic lesion mapping
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn