Share:
Share this content in WeChat
X
Special Focu
Evaluation of spatiotemporal distribution of neonatal punctate white matter lesions based on probabilistic lesion mapping
WANG Miaomiao  LIU Congcong  LI Xianjun  WANG Xiaoyu  BAI Pengxuan  JIN Chao  SUN Qinli  YANG Jian 

Cite this article as: WANG M M, LIU C C, LI X J, et al. Evaluation of spatiotemporal distribution of neonatal punctate white matter lesions based on probabilistic lesion mapping[J]. Chin J Magn Reson Imaging, 2024, 15(9): 23-28. DOI:10.12015/issn.1674-8034.2024.09.005.


[Abstract] Objective To detailed the common location of neonatal punctate white matter lesions (PWML) and further investigate the spatiotemporal distribution based on the probabilistic lesion mapping of T1WI.Materials and Methods A total of 94 neonates with PWML were retrospectively enrolled, including 60 mild type (preterm/term 24/36) and 34 severe type (preterm/term 20/14). The manually labeled lesions on each neonatal T1WI was registered to the John Hopkins University template and further added to the corresponding atlas. The probabilistic PWML map and values were then generated based on the cumulative number of PWML lesions that occurred in homologous brain regions across participants in the standard atlas. The PWML volume between mild and severe groups and between preterm and term neonates within groups were further compared.Results Mild PWML were mainly distributed in temporal and occipital lobes (lesion volume was larger in the tempor-parietal lobes than that in the frontal and occipital lobes, P<0.008), especially in the posterior thalamic radiation, angular gyrus and supramarginal gyrus. The injury was extensive in the preterm than the term, and extended to the frontal lobe. Severe injury was extensively involved the fronto-tempor-occipital lobes (lesion volume was larger in the fronto-tempor-occipital lobes than that in the occipital lobe, P<0.008). The distribution range of preterm and term PWML is relatively consistent, and the common involved areas include posterior radiation of thalamus, angular gyrus and superior corona radiata.Conclusions The T1WI based lesion probabilistic mapping defined the spatio-temporal distribution characteristics of neonatal PWML at brain region level. This provides an anatomical basis for further understanding the pathophysiological mechanism and prognosis evaluation of PWML.
[Keywords] neonates;punctate white matter lesions;magnetic resonance imaging;lesion distribution;lesion probabilistic mapping

WANG Miaomiao   LIU Congcong   LI Xianjun   WANG Xiaoyu   BAI Pengxuan   JIN Chao   SUN Qinli   YANG Jian*  

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

Corresponding author: YANG J, E-mail: yj1118@xjtu.edu.cn

Conflicts of interest   None.

Received  2024-02-25
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.005
Cite this article as: WANG M M, LIU C C, LI X J, et al. Evaluation of spatiotemporal distribution of neonatal punctate white matter lesions based on probabilistic lesion mapping[J]. Chin J Magn Reson Imaging, 2024, 15(9): 23-28. DOI:10.12015/issn.1674-8034.2024.09.005.

[1]
INDER T E, VOLPE J J, ANDERSON P J. Defining the neurologic consequences of preterm birth[J]. N Engl J Med, 2023, 389(5): 441-453. DOI: 10.1056/NEJMra2303347.
[2]
DE BRUIJN C A M, DI MICHELE S, TATARANNO M L, et al. Neurodevelopmental consequences of preterm punctate white matter lesions: a systematic review[J]. Pediatr Res, 2023, 93(6): 1480-1490. DOI: 10.1038/s41390-022-02232-3.
[3]
WANG M M, LIU C C, YANG J. Research progress of infantile punctate white matter lesions on magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2020, 11(8): 699-703. DOI: 10.12015/issn.1674-8034.20.
[4]
GUO T, DUERDEN E G, ADAMS E, et al. Quantitative assessment of white matter injury in preterm neonates: Association with outcomes[J]. Neurology, 2017, 88(7): 614-622. DOI: 10.1212/WNL.0000000000003606.
[5]
CAYAM-RAND D, GUO T, GRUNAU R E, et al. Predicting developmental outcomes in preterm infants: A simple white matter injury imaging rule[J/OL]. Neurology, 2019, 93(13): e1231-e1240 [2024-02-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011867. DOI: 10.1212/WNL.0000000000008172.
[6]
SELVANATHAN T, GUO T, UFKES S, et al. Change in volumes and location of preterm white matter injury over a period of 15 years[J/OL]. J Pediatr, 2024, 272: 114090 [2024-02-25]. https://www.jpeds.com/article/S0022-3476(24)00193-8/fulltext. DOI: 10.1016/j.jpeds.2024.114090.
[7]
CHILDS A M, CORNETTE L, RAMENGHI L A, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants[J]. Clin Radiol, 2001, 56(8): 647-655. DOI: 10.1053/crad.2001.0754.
[8]
GAO Y, LI J, XU H, et al. A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI[J]. Magn Reson Imaging, 2019, 63: 70-79. DOI: 10.1016/j.mri.2019.08.025.
[9]
GUILLOT M, MILLER S P. The dimensions of white matter injury in preterm neonates[J/OL]. Semin Perinatol, 2021, 45(7): 151469 [2024-02-25]. https://linkinghub.elsevier.com/retrieve/pii/S0146-0005(21)00083-5. DOI: 10.1016/j.semperi.2021.151469.
[10]
VAN TILBORG E, DE THEIJE C G M, VAN HAL M, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury[J]. Glia, 2018, 66(2): 221-238. DOI: 10.1002/glia.23256.
[11]
KUHN S, GRITTI L, CROOKS D, et al. Oligodendrocytes in development, myelin generation and beyond[J/OL]. Cells, 2019,8(11): 1424 [2024-02-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912544. DOI: 10.3390/cells8111424.
[12]
MARIN O, RUBENSTEIN J L. Cell migration in the forebrain[J/OL]. Annu Rev Neurosci, 2003, 26: 441-483. DOI: 10.1146/annurev.neuro.26.041002.131058.
[13]
JUDAS M, RADOS M, JOVANOV-MILOSEVIC N, et al. Structural, immunocytochemical, and mr imaging properties of periventricular crossroads of growing cortical pathways in preterm infants[J]. AJNR Am J Neuroradiol, 2005, 26(10): 2671-2684.
[14]
BRAZEL C Y, ROMANKO M J, ROTHSTEIN R P, et al. Roles of the mammalian subventricular zone in brain development[J]. Prog Neurobiol, 2003, 69(1): 49-69. DOI: 10.1016/s0301-0082(03)00002-9.
[15]
SKOFF R P, BESSERT D A, BARKS J D, et al. Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice[J]. Int J Dev Neurosci, 2001, 19(2): 197-208. DOI: 10.1016/s0736-5748(00)00075-7.
[16]
KIM H G, LEE J H, CHOI J W, et al. Multidelay arterial spin-labeling MRI in neonates and infants: cerebral perfusion changes during brain maturation[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1912-1918. DOI: 10.3174/ajnr.A5774.
[17]
PICCIRILLI E, CHIARELLI A M, SESTIERI C, et al. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI[J]. Hum Brain Mapp, 2023,44(9): 3833-3844. DOI: 10.1002/hbm.26315.
[18]
LI A M, CHAU V, POSKITT K J, et al. White matter injury in term newborns with neonatal encephalopathy[J]. Pediatr Res, 2009, 65(1): 85-89. DOI: 10.1203/PDR.0b013e31818912d2.
[19]
GIUDICE C, ROGERS E E, JOHNSON B C, et al. Neuroanatomical correlates of sensory deficits in children with neonatal arterial ischemic stroke[J]. Dev Med Child Neurol, 2019, 61(6): 667-671. DOI: 10.1111/dmcn.14101.
[20]
JUNG R E, HAIER R J. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence[J]. Behav Brain Sci, 2007, 30(2): 135-154; discussion 154-187. DOI: 10.1017/S0140525X07001185.
[21]
YAKAR F, ÇELTIKÇI P, DOĞRUEL Y, et al. The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study[J]. Brain Struct Funct, 2023, 228(1): 121-130. DOI: 10.1007/s00429-022-02555-1.
[22]
TUSOR N, BENDERS M J, COUNSELL S J, et al. Punctate white matter lesions associated with altered brain development and adverse motor outcome in preterm infants[J/OL]. Sci Rep, 2017, 7(1): 13250 [2024-02-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643493. DOI: 10.1038/s41598-017-13753-x.

PREV Lateralization of brain volume in term newborns based on MR structural imaging
NEXT Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn