Share:
Share this content in WeChat
X
Special Focu
Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot
REN Jingya  DONG Suzhen 

Cite this article as: REN J Y, DONG S Z. Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot[J]. Chin J Magn Reson Imaging, 2024, 15(9): 29-32, 40. DOI:10.12015/issn.1674-8034.2024.09.006.


[Abstract] Objective To quantitatively evaluate the difference of deep gray matter (DGM) volume in fetuses with tetralogy of Fallot (TOF) compared with normal fetuses by prenatal MRI.Materials and Methods Sixty single pregnant women with gestational age (GA) of 19-33 weeks received prenatal fetal MRI examination, of which 30 fetuses with TOF had an average GA of (25.30±3.65) weeks, including 15 cases GA<26 weeks and 15 cases GA≥26 weeks. The average GA (25.83±3.98) weeks was normal in 30 cases (control group), including 15 cases GA<26 weeks and 15 cases GA≥26 weeks. Fetal MRI was collected using single-shot turbo spin echo (SSTSE) sequence. After image post-processing, the brain was manually divided and the three-dimensional volume of DGM on both sides of the fetal brain was measured. The DGM volume and GA of fetal brain were analyzed by regression, and the difference of DGM volume and the symmetry of left and right DGM volume between the two groups were compared.Results There was no significant difference in DGM volume between the two groups. The fetal DGM volume of GA<26 weeks TOF group was lower than that of normal control group (t=2.90, P=0.007). DGM volume of the TOF group with GA≥26 weeks was also decreased compared with the normal control group (t=2.11, P=0.04), and the differences were statistically significant.Conclusions Fetal DGM volume in the TOF group was different from that of normal fetuses in the first and second trimester of pregnancy, and the difference still existed in the second and third trimester of pregnancy with the rapid growth of fetal brain volume, which could provide reference for quantitative prenatal assessment of fetal brain development abnormalities of TOF.
[Keywords] fetus;brain;magnetic resonance imaging;tetralogy of Fallot;deep gray matter volume

REN Jingya   DONG Suzhen*  

Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Corresponding author: DONG S Z, E-mail: dongsuzhen@126.com

Conflicts of interest   None.

Received  2023-12-04
Accepted  2024-03-15
DOI: 10.12015/issn.1674-8034.2024.09.006
Cite this article as: REN J Y, DONG S Z. Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot[J]. Chin J Magn Reson Imaging, 2024, 15(9): 29-32, 40. DOI:10.12015/issn.1674-8034.2024.09.006.

[1]
WISE-FABEROWSKI L, ASIJA R, MCELHINNEY D B. Tetralogy of fallot: Everything you wanted to know but were afraid to ask[J]. Paediatr Anaesth, 2019, 29(5): 475-482. DOI: 10.1111/pan.13569.
[2]
DOWNING T E, KIM Y Y. Tetralogy of fallot: General principles of management[J]. Cardiol Clin, 2015, 33(4): 531-541, vii-viii. DOI: 10.1016/j.ccl.2015.07.002.
[3]
WIPUTRA H, CHEN C K, TALBI E, et al. Human fetal hearts with tetralogy of Fallot have altered fluid dynamics and forces[J/OL]. Am J Physiol Heart Circ Physiol, 2018, 315(6): H1649-H1659 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/30216114/. DOI: 10.1152/ajpheart.00235.2018.
[4]
REN J Y, ZHU M, DONG S Z. Three-dimensional volumetric magnetic resonance imaging detects early alterations of the brain growth in fetuses with congenital heart disease[J]. J Magn Reson Imaging, 2021, 54(1): 263-272. DOI: 10.1002/jmri.27526.
[5]
PEYVANDI S, ROLLINS C. Fetal brain development in congenital heart disease[J]. Can J Cardiol, 2023, 39(2): 115-122. DOI: 10.1016/j.cjca.2022.09.020.
[6]
NI Q, ZHANG Y, WEN T, et al. A sparse volume reconstruction method for fetal brain mri using adaptive kernel regression[J/OL]. Biomed Res Int, 2021, 2021: 6685943 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/33748279/. DOI: 10.1155/2021/6685943.
[7]
TOURBIER S, VELASCO-ANNIS C, TAIMOURI V, et al. Automated template-based brain localization and extraction for fetal brain MRI reconstruction[J]. Neuroimage, 2017, 155: 460-472. DOI: 10.1016/j.neuroimage.2017.04.004.
[8]
UUS A, ZHANG T, JACKSON L H, et al. Deformable slice-to-volume registration for motion correction of fetal body and placenta MRI[J]. IEEE Trans Med Imaging, 2020, 39(9): 2750-2759. DOI: 10.1109/tmi.2020.2974844.
[9]
UUS A U, GRIGORESCU I, VAN POPPEL M P M, et al. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range[J/OL]. Med Image Anal, 2022, 80: 102484 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35649314/. DOI: 10.1016/j.media.2022.102484.
[10]
KIM K, HABAS P, RAJAGOPALAN V, et al. Non-iterative relative bias correction for 3D reconstruction of in utero fetal brain MR imaging[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2010, 2010: 879-882. DOI: 10.1109/iembs.2010.5627876.
[11]
KIM K, HABAS P A, RAJAGOPALAN V, et al. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction[J]. IEEE Trans Med Imaging, 2011, 30(9): 1704-1712. DOI: 10.1109/tmi.2011.2143724.
[12]
SINGH A, SALEHI S S M, GHOLIPOUR A. Deep predictive motion tracking in magnetic resonance imaging: Application to fetal imaging[J]. IEEE Trans Med Imaging, 2020, 39(11): 3523-3534. DOI: 10.1109/tmi.2020.2998600.
[13]
KUKLISOVA-MURGASOVA M, QUAGHEBEUR G, RUTHERFORD M A, et al. Reconstruction of fetal brain MRI with intensity matching and complete outlier removal[J]. Med Image Anal, 2012, 16(8): 1550-1564. DOI: 10.1016/j.media.2012.07.004.
[14]
DEPREST T, FIDON L, DE KEYZER F, et al. Application of automatic segmentation on super-resolution reconstruction MR images of the abnormal fetal brain[J]. AJNR Am J Neuroradiol, 2023, 44(4): 486-491. DOI: 10.3174/ajnr.A7808.
[15]
YANG M, LIU Y, MA S, et al. Altered brain structure in preschool-aged children with tetralogy of Fallot[J]. Pediatr Res, 2023, 93(5): 1321-1327. DOI: 10.1038/s41390-022-01987-z.
[16]
ORTINAU C M, MANGIN-HEIMOS K, MOEN J, et al. Prenatal to postnatal trajectory of brain growth in complex congenital heart disease[J]. Neuroimage Clin, 2018, 20: 913-922. DOI: 10.1016/j.nicl.2018.09.029.
[17]
LAURIDSEN M H, ULDBJERG N, HENRIKSEN T B, et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects[J/OL]. Circ Cardiovasc Imaging, 2017, 10(11): e006459 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/29141840/. DOI: 10.1161/circimaging.117.006459.
[18]
DE ASIS-CRUZ J, ANDESCAVAGE N, LIMPEROPOULOS C. Adverse prenatal exposures and fetal brain development: Insights from advanced fetal magnetic resonance imaging[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5): 480-490. DOI: 10.1016/j.bpsc.2021.11.009.
[19]
KHALIL A, BENNET S, THILAGANATHAN B, et al. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review[J]. Ultrasound Obstet Gynecol, 2016, 48(3): 296-307. DOI: 10.1002/uog.15932.
[20]
CROMB D, UUS A, VAN POPPEL M P M, et al. Total and regional brain volumes in fetuses with congenital heart disease[J/OL]. J Magn Reson Imaging, 2023 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/37846811/. DOI: 10.1002/jmri.29078.
[21]
ROLLINS C K, ORTINAU C M, STOPP C, et al. Regional Brain Growth Trajectories in Fetuses with Congenital Heart Disease[J]. Ann Neurol, 2021, 89(1): 143-157. DOI: 10.1002/ana.25940.
[22]
ALSAIED T, TSENG S, KING E, et al. Effect of fetal hemodynamics on growth in fetuses with single ventricle or transposition of the great arteries[J]. Ultrasound Obstet Gynecol, 2018, 52(4): 479-487. DOI: 10.1002/uog.18936.
[23]
PAPAIOANNOU G, GAREL C. The fetal brain: migration and gyration anomalies - pre- and postnatal correlations[J]. Pediatr Radiol, 2023, 53(4): 589-601. DOI: 10.1007/s00247-022-05458-9.
[24]
KHANDELWAL A, AGGARWAL A, SHARMA A, et al. Magnetic resonance imaging of malformations of cortical development-a comprehensive review[J]. World Neurosurg, 2022, 159: 70-79. DOI: 10.1016/j.wneu.2021.12.011.
[25]
LEE F T, SEED M, SUN L, et al. Fetal brain issues in congenital heart disease[J]. Transl Pediatr, 2021, 10(8): 2182-2196. DOI: 10.21037/tp-20-224.
[26]
ANDESCAVAGE N N, DU PLESSIS A, MCCARTER R, et al. Complex trajectories of brain development in the healthy human fetus[J]. Cereb Cortex, 2017, 27(11): 5274-5283. DOI: 10.1093/cercor/bhw306.
[27]
ZHANG X, ZHU M, DONG S Z. Prenatal assessment of the cardiovascular structure and brain development of fetuses with tetralogy of Fallot on fetal MRI[J]. Chin J Radiol, 2022, 56(5): 488-493. DOI: 10.3760/cma.j.cn112149-20210630-00617.
[28]
SCHELLEN C, ERNST S, GRUBER G M, et al. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot[J/OL]. Am J Obstet Gynecol, 2015, 213(3): 392.e1-7 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/26008177/. DOI: 10.1016/j.ajog.2015.05.046.
[29]
GIUSSANI D A. The fetal brain sparing response to hypoxia: physiological mechanisms[J]. J Physiol, 2016, 594(5): 1215-1230. DOI: 10.1113/jp271099.
[30]
CAHILL L S, HOGGARTH J, LERCH J P, et al. Fetal brain sparing in a mouse model of chronic maternal hypoxia[J]. J Cereb Blood Flow Metab, 2019, 39(6): 1172-1184. DOI: 10.1177/0271678x17750324.
[31]
SADHWANI A, WYPIJ D, ROFEBERG V, et al. Fetal brain volume predicts neurodevelopment in congenital heart disease[J]. Circulation, 2022, 145(15): 1108-1119. DOI: 10.1161/circulationaha.121.056305.
[32]
BRADY D, SCHLATTERER S D, WHITEHEAD M T. Fetal brain MRI: neurometrics, typical diagnoses, and resolving common dilemmas[J/OL]. Br J Radiol, 2023, 96(1147): 20211019 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35604645/. DOI: 10.1259/bjr.20211019.
[33]
KHALILI N, LESSMANN N, TURK E, et al. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks[J]. Magn Reson Imaging, 2019, 64: 77-89. DOI: 10.1016/j.mri.2019.05.020.
[34]
WU J, YU B, WANG L, et al. Longitudinal Chinese Population Structural Fetal Brain Atlases Construction: toward precise fetal brain segmentation[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2745-2749. DOI: 10.1109/embc46164.2021.9630514.
[35]
SOBOTKA D, EBNER M, SCHWARTZ E, et al. Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data[J/OL]. Neuroimage, 2022, 255: 119213 [2023-12-04]. https://pubmed.ncbi.nlm.nih.gov/35430359/. DOI: 10.1016/j.neuroimage.2022.119213.
[36]
LI H, YAN G, LUO W, et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing[J]. Brain Struct Funct, 2021, 226(6): 1961-1972. DOI: 10.1007/s00429-021-02303-x.

PREV Evaluation of spatiotemporal distribution of neonatal punctate white matter lesions based on probabilistic lesion mapping
NEXT Value of intravoxel incoherent motion diffusion in the clinical diagnosis of Alzheimer,s disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn