Share:
Share this content in WeChat
X
Clinical Article
Value of intravoxel incoherent motion diffusion in the clinical diagnosis of Alzheimer's disease
XING Peiqiu  CHEN Qiuyan  ZHENG Tianxiu  ZHENG Yushan  QIU Yanhua  WEI Dingtai 

Cite this article as: XING P Q, CHEN Q Y, ZHENG T X, et al. Value of intravoxel incoherent motion diffusion in the clinical diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 33-40. DOI:10.12015/issn.1674-8034.2024.09.007.


[Abstract] Objective To investigate the application value of intravoxel incoherent motion (IVIM) in the clinical diagnosis of Alzheimer's disease (AD).Materials and Methods A total of 60 subjects were included in this study, including 23 in the AD group, 22 in the mild cognitive impairment (MCI) group and 15 in the normal control (NC) group. The standard apparent diffusion coefficient (ADCst) and IVIM measures IVIM measures of hippocampal head, hippocampus and hippocampal tail among the three groups were compared for statistical significance, and the correlation between clinically relevant cognitive scores and MRI measures was analyzed.Results Compared with NC group, ADCst in hippocampus and hippocampus of MCI group and AD group showed an increased trend, but only the right hippocampal head and bilateral hippocampus of AD group and the left hippocampus of MCI group had statistical differences (P<0.05). The increase of IVIM-D value in MCI group and AD group was more obvious. Compared with NC group, the statistical difference was found in the bilateral hippocampus of MCI group (P<0.05), bilateral hippocampal head of AD group (P≤0.001) and bilateral hippocampus of AD group (P<0.001). The IVIM-D values of both hippocampal head and hippocampus in AD group were higher than those in MCI group, with statistical difference (P<0.01). There was no statistically significant difference in the hippocampal tail among the three groups (P>0.05).The ADCst values of the right hippocampus and the IVIM-D values of the bilateral hippocampal head and hippocampus were moderately correlated with the total score of MMSE (0.4<|r|<0.7), while the ADCst values of the bilateral hippocampal head and the left hippocampus were weakly correlated with the total score of MMSE (0.2<|r|<0.4). Further use the receiver operating characteristic, ROC curve analysis showed that ADCst values of bilateral hippocampal head and right hippocampus and IVIM-D values of bilateral hippocampal head and hippocampus had certain diagnostic efficiency in distinguishing AD (AUC=0.664-0.866, P<0.05). The AUC of IVIM-D in the right hippocampus was the largest (P<0.001). By combining the IVIM-D values of bilateral hippocampal head and hippocampus to establish a diagnostic prediction model, the AUC could be further improved to 0.961. The prediction model based on IVIM-D values shows a closer fit to the standard curve in actual observations and demonstrates a higher net yield.Conclusions IVIM imaging is a promising imaging method to distinguish AD from NC, and the IVIM-ADC of hippocampal head and hippocampus may be effective biomarkers to diagnose MCI and AD.
[Keywords] Alzheimer's disease, mild cognitive impairment, intravoxel incoherent motion diffusion, magnetic resonance imaging;hippocampus

XING Peiqiu1, 2   CHEN Qiuyan1, 2   ZHENG Tianxiu1, 2   ZHENG Yushan1, 2   QIU Yanhua1, 3   WEI Dingtai1, 2*  

1 Department of Imaging, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

2 Functional and Molecular Imaging Laboratory for Cerebral Vascular Diseases, Ningde Hospital Affiliated to Ningde Normal University, Ningde 352100, China

3 Department of Imaging, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China

Corresponding author: WEI D T, E-mail: wdtai83@163.com

Conflicts of interest   None.

Received  2024-05-12
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.007
Cite this article as: XING P Q, CHEN Q Y, ZHENG T X, et al. Value of intravoxel incoherent motion diffusion in the clinical diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 33-40. DOI:10.12015/issn.1674-8034.2024.09.007.

[1]
ZHANG X W, ZHU X X, TANG D S, et al. Targeting autophagy in Alzheimer's disease: Animal models and mechanisms[J]. Zool Res, 2023, 44(6): 1132-1145. DOI: 10.24272/j.issn.2095-8137.2023.294.
[2]
MIELKE M M, AGGARWAL N T, VILA-CASTELAR C, et al. Consideration of sex and gender in Alzheimer's disease and related disorders from a global perspective[J]. Alzheimers Dement, 2022, 18(12): 2707-2724. DOI: 10.1002/alz.12662.
[3]
DUBOIS B, HAMPEL H, FELDMAN H H, et al. Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria[J]. Alzheimers Dement, 2016, 12(3): 292-323. DOI: 10.1016/j.jalz.2016.02.002.
[4]
National Health Commission, PRC. Diagnosis and treatment of Alzheimer disease(2020 edition)[J]. Clinical Education of General Practice, 2021, 19(1): 4-6. DOI: 10.13558/j.cnki.issn1672-3686.2021.001.002.
[5]
PETRONE P M, CASAMITJANA A, FALCON C, et al. Prediction of amyloid pathology in cognitively unimpaired individuals using voxel-wise analysis of longitudinal structural brain MRI[J/OL]. Alzheimers Res Ther, 2019, 11(1): 72 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/31421683/. DOI: 10.1186/s13195-019-0526-8.
[6]
ALVES C, JORGE L, CANÁRIO N, et al. Interplay Between Macular Retinal Changes and White Matter Integrity in Early Alzheimer's Disease[J]. J Alzheimers Dis, 2019, 70(3): 723-732. DOI: 10.3233/JAD-190152.
[7]
WIERENGA C E, HAYS C C, ZLATAR Z Z. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease[J]. J Alzheimers Dis, 2014, 42 (Suppl 4): S411-S419. DOI: 10.3233/JAD-141467.
[8]
KANTARCI K, PETERSEN R C, BOEVE B F, et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment[J]. Neurology, 2005, 64(5): 902-904. DOI: 10.1212/01.WNL.0000153076.46126.E9.
[9]
MARJAŃSKA M, MCCARTEN J R, HODGES J S, et al. Distinctive neurochemistry in Alzheimer's disease via 7 T in vivo magnetic resonance spectroscopy[J]. J Alzheimers Dis, 2019, 68(2): 559-569. DOI: 10.3233/JAD-180861.
[10]
FEDERAU C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence[J/OL]. NMR Biomed, 2017, 30(11): 10 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/28885745/. DOI: 10.1002/nbm.3780.
[11]
FEDERAU C, WINTERMARK M, CHRISTENSEN S, et al. Collateral blood flow measurement with intravoxel incoherent motion perfusion imaging in hyperacute brain stroke[J/OL]. Neurology, 2019, 92(21): e2462-e2471 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/31019105. DOI: 10.1212/WNL.0000000000007538.
[12]
PASCHOAL A M, LEONI R F, DOS SANTOS A C, et al. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases[J]. Neuroimage Clin, 2018, 20: 705-714. DOI: 10.1016/j.nicl.2018.08.030.
[13]
RIEDERER I, BOHN K P, PREIBISCH C, et al. Alzheimer disease and mild cognitive impairment: Integrated pulsed arterial spin-labeling MRI and 18F-FDG PET[J]. Radiology, 2018, 288(1): 198-206. DOI: 10.1148/radiol.2018170575.
[14]
XIA N, LI Y, XUE Y, et al. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease[J]. Brain Imaging Behav, 2022, 16(2): 617-626. DOI: 10.1007/s11682-021-00538-0.
[15]
BERGAMINO M, NESPODZANY A, BAXTER L C, et al. Preliminary assessment of intravoxel incoherent motion diffusion-weighted MRI (IVIM-DWI) metrics in Alzheimer's disease[J]. J Magn Reson Imaging, 2020, 52(6): 1811-1826. DOI: 10.1002/jmri.27272.
[16]
MCKHANN G, DRACHMAN D, FOLSTEIN M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease[J]. Neurology, 1984, 34(7): 939-944. DOI: 10.1212/wnl.34.7.939.
[17]
ALBERT M S, DEKOSKY S T, DICKSON D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 270-279. DOI: 10.1016/j.jalz.2011.03.008.
[18]
BAI Y C, MA C H, LI J, et al. Application of synthetic magnetic resonance imaging combined with high resolution magnetic resonance diffusion imaging in medial temporal lobe epilepsy with hippocampal sclerosis[J]. Chin J Med Imaging, 2022, 30(12): 1206-1211. DOI: 10.3969/j.issn.1005-5185.2022.12.002.
[19]
GRAFF-RADFORD J, YONG K X X, APOSTOLOVA L G, et al. New insights into atypical Alzheimer's disease in the era of biomarkers[J]. Lancet Neurol, 2021, 20(3): 222-234. DOI: 10.1016/S1474-4422(20)30440-3.
[20]
SINGH N A, SINTINI I. Editorial: New insights into atypical Alzheimer's disease: from clinical phenotype to biomarkers[J/OL]. Front Neurosci, 2024, 18: 1414443 [2024-05-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091363. DOI: 10.3389/fnins.2024.1414443.
[21]
MOHANTY R, FERREIRA D, WESTMAN E. Multi-pathological contributions toward atrophy patterns in the Alzheimer's disease continuum[J/OL]. Front Neurosci, 2024, 18: 1355695 [2024-05-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036869. DOI: 10.3389/fnins.2024.1355695.
[22]
MÁRQUEZ F, YASSA M A. Neuroimaging biomarkers for Alzheimer's disease[J/OL]. Mol Neurodegener, 2019, 14(1): 21 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/31174557/. DOI: 10.1186/s13024-019-0325-5.
[23]
OSSENKOPPELE R, VAN DER KANT R, HANSSON O. Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials[J]. Lancet Neurol, 2022, 21(8): 726-734. DOI: 10.1016/S1474-4422(22)00168-5.
[24]
QIU Y H, CHEN Q Y, SHI L W, et al. Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 6-14. DOI: 10.12015/issn.1674-8034.2023.12.002.
[25]
LIU M, SAADAT N, JEONG Y, et al. Quantitative perfusion and water transport time model from multi b-value diffusion magnetic resonance imaging validated against neutron capture microspheres[J/OL]. J Med Imaging (Bellingham), 2023, 10(6): 063501 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/38090645/. DOI: 10.1117/1.JMI.10.6.063501.
[26]
LIPIŃSKI K, BOGORODZKI P. Evaluation of whole brain intravoxel incoherent motion (IVIM) imaging[J]. Diagnostics (Basel), 2024, 14(6): 653 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/38535073/. DOI: 10.3390/diagnostics14060653.
[27]
ENGLUND E K, REITER D A, SHAHIDI B, et al. Intravoxel incoherent motion magnetic resonance imaging in skeletal muscle: Review and future directions[J]. J Magn Reson Imaging, 2022, 55(4): 988-1012. DOI: 10.1002/jmri.27875.
[28]
LE BIHAN D, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[29]
MCKHANN G M, KNOPMAN D S, CHERTKOW H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269. DOI: 10.1016/j.jalz.2011.03.005.
[30]
ALTAMURA C, SCRASCIA F, QUATTROCCHI C C, et al. Regional MRI diffusion, white-matter hyperintensities, and cognitive function in Alzheimer's disease and vascular dementia[J]. J Clin Neurol, 2016, 12(2): 201-208. DOI: 10.3988/jcn.2016.12.2.201.
[31]
ZHAO P, MA X, BAN C, et al. Brain diffusion weighted imaging study of Mongolian idiopathic epilepsy[J/OL]. J Healthc Eng, 2022, 2022: 6978116 [2024-05-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722273. DOI: 10.1155/2022/6978116.
[32]
MAK E, GABEL S, SU L, et al. Multi-modal MRI investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, Alzheimer's disease, and dementia with Lewy bodies[J]. Int Psychogeriatr, 2017, 29(4): 545-555. DOI: 10.1017/S1041610216002143.
[33]
KODALI M, ATTALURI S, MADHU L N, et al. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus[J/OL]. Aging Cell, 2021, 20(2): e13277 [2024-05-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884047. DOI: 10.1111/acel.13277.
[34]
IACHINI T, RUOTOLO F, IAVARONE A, et al. From aMCI to AD: The role of visuo-spatial memory span and executive functions in egocentric and allocentric spatial impairments[J/OL]. Brain Sci, 2021, 11(11): 1536 [2024-05-12]. https://pubmed.ncbi.nlm.nih.gov/34827534/. DOI: 10.3390/brainsci11111536.
[35]
KIM M, MOON S Y. Need for an update for the guideline for the management of mild cognitive impairment[J]. Dement Neurocogn Disord, 2022, 21(4): 107-116. DOI: 10.12779/dnd.2022.21.4.107.

PREV Prenatal MRI quantified the deep gray matter volume of the fetal brain in tetralogy of Fallot
NEXT Correlation of cognitive reserve, neurovascular coupling and cognitive function in patients with mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn