Share:
Share this content in WeChat
X
Clinical Article
Correlation of cognitive reserve, neurovascular coupling and cognitive function in patients with mild cognitive impairment
YANG Wenxia  ZHOU Liang  XU Lili  LÜ Zixin  HU Wanjun  LIU Yang  LI Darui  ZHANG Jing 

Cite this article as: YANG W X, ZHOU L, XU L L, et al. Correlation of cognitive reserve, neurovascular coupling and cognitive function in patients with mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(9): 41-46, 52. DOI:10.12015/issn.1674-8034.2024.09.008.


[Abstract] Objective To investigate the neural vascular coupling mechanisms of cognitive reserve (CR) influencing cognitive function in patients with mild cognitive impairment (MCI) using arterial spin labeling (ASL) and resting-state functional MRI (rs-fMRI) methods.Materials and Methods This study prospectively recruited 40 MCI patients and 26 age- and gender-matched healthy controls (HC). All participants underwent ASL and rs-fMRI imaging on a 3.0 T MRI scanner and standardized neuropsychological assessments, including the Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Activity of Daily Living Scale (ADL), Auditory Verbal Learning Test (AVLT), and Verbal Fluency Test (VFT). Cognitive Reserve Index questionnaire (CRIq) scores were generated based on education level, leisure activities, and work experience ratings for both groups to assess CR. Amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), and cerebral blood flow (CBF) were obtained at the voxel level, and CBF/ALFF and CBF/fALFF values were calculated to assess neural vascular coupling. Regions of interest (ROIs) with significant between-group differences in CBF/ALFF and CBF/fALFF were selected for further correlation analysis with cognitive function and CR scales to elucidate the relationship between cognitive reserve, neural vascular coupling, and cognitive performance.Results CRIq scores were significantly lower in the MCI group compared to the HC group (89.23±11.03 vs. 98.70±12.75). In MCI and HC, CRIq scores were positively correlated with MoCA and AVLT scores (r=0.447, P=0.004; r=0.344, P=0.030; r=0.245, P=0.050; r=0.900, P<0.001). Compared to HC, MCI patients showed significantly increased CBF/ALFF ratios in bilateral temporal middle gyrus (bilateral, two-tailed P<0.005, alphsim corrected, cluster size>39), and significantly decreased CBF/ALFF ratios in bilateral orbital inferior frontal gyrus and frontal middle gyrus (bilateral, two-tailed P<0.005, alphsim corrected, cluster size>93). Additionally, CBF/fALFF ratios were increased in bilateral temporal fusiform gyrus (bilateral, two-tailed P<0.005, alphsim corrected, cluster size>53) in MCI. Furthermore, in the MCI group, the left orbital inferior frontal gyrus CBF/ALFF ratio was negatively correlated with CRIq, MoCA, and AVLT scores (r=-0.417, P=0.007; r=-0.336, P=0.034; r=-0.378, P=0.016).Conclusions Individuals with higher cognitive reserve (CR) exhibit better cognitive function. Among patients with mild cognitive impairment (MCI), those with higher CR show a lower left orbitofrontal cortex CBF/ALFF ratio, indicating neurovascular uncoupling. This uncoupling is associated with more severe brain pathology, yet these individuals maintain good cognitive function. This suggests that neurovascular coupling and uncoupling might be potential neural mechanisms through which CR influences cognitive function in MCI patients.
[Keywords] mild cognitive impairment;functional magnetic resonance imaging;magnetic resonance imaging;neurovascular coupling;cognitive reserve

YANG Wenxia1, 2   ZHOU Liang1, 2   XU Lili1, 2   LÜ Zixin3, 4   HU Wanjun1, 2   LIU Yang1, 2   LI Darui1, 2   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China

4 Department of Magnetic Resonance, Lanzhou University Second Hospital Xigu Hospital, Lanzhou 730060, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2024-05-16
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.008
Cite this article as: YANG W X, ZHOU L, XU L L, et al. Correlation of cognitive reserve, neurovascular coupling and cognitive function in patients with mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2024, 15(9): 41-46, 52. DOI:10.12015/issn.1674-8034.2024.09.008.

[1]
PÉREZ PALMER N, TREJO ORTEGA B, JOSHI P. Cognitive impairment in older adults: epidemiology, diagnosis, and treatment[J]. Psychiatr Clin North Am, 2022, 45(4): 639-661. DOI: 10.1016/j.psc.2022.07.010.
[2]
STERN Y, ARENAZA-URQUIJO E M, BARTRÉS-FAZ D, et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance[J]. Alzheimers Dement, 2020, 16(9): 1305-1311. DOI: 10.1016/j.jalz.2018.07.219.
[3]
IRANIPARAST M, SHI Y D, WU Y, et al. Cognitive reserve and mild cognitive impairment: predictors and rates of reversion to intact cognition vs progression to dementia[J/OL]. Neurology, 2022, 98(11): e1114-e1123 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35121669/. DOI: 10.1212/WNL.0000000000200051.
[4]
CORBO I, MARSELLI G, CIERO V D, et al. The protective role of cognitive reserve in mild cognitive impairment: a systematic review[J/OL]. J Clin Med, 2023, 12(5): 1759 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36902545/. DOI: 10.3390/jcm12051759.
[5]
BEREZUK C, SCOTT S C, BLACK S E, et al. Cognitive reserve, cognition, and real-world functioning in MCI: a systematic review and meta-analysis[J]. J Clin Exp Neuropsychol, 2021, 43(10): 991-1005. DOI: 10.1080/13803395.2022.2047160.
[6]
ZHU W Q, GAO Z W, LI H, et al. Education reduces cognitive dysfunction in Alzheimer's disease by changing regional cerebral perfusion: an in-vivo arterial spin labeling study[J]. Neurol Sci, 2023, 44(7): 2349-2361. DOI: 10.1007/s10072-023-06696-x.
[7]
BOYLE R, KNIGHT S P, LOOZE C D, et al. Verbal intelligence is a more robust cross-sectional measure of cognitive reserve than level of education in healthy older adults[J/OL]. Alzheimers Res Ther, 2021, 13(1): 128 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/34253231/. DOI: 10.1186/s13195-021-00870-z.
[8]
PETERSEN R C, SMITH G E, WARING S C, et al. Mild cognitive impairment: clinical characterization and outcome[J]. Arch Neurol, 1999, 56(3): 303-308. DOI: 10.1001/archneur.56.3.303.
[9]
PETERSEN R C, AISEN P S, BECKETT L A, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization[J]. Neurology, 2010, 74(3): 201-209. DOI: 10.1212/WNL.0b013e3181cb3e25.
[10]
SATO T, HANYU, KOYAMA Y, et al. Discrepancy between the degree of cognitive impairment and brain imaging abnormalities in Alzheimer's disease patients is associated with cognitive reserve[J]. J Alzheimers Dis, 2021, 84(1): 273-281. DOI: 10.3233/JAD-210728.
[11]
FINGERHUT H, GOZDAS E, HOSSEINI S M H. Quantitative MRI evidence for cognitive reserve in healthy Elders and prodromal Alzheimer's disease[J]. J Alzheimers Dis, 2022, 89(3): 849-863. DOI: 10.3233/JAD-220197.
[12]
NUCCI M, MAPELLI D, MONDINI S. Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve[J]. Aging Clin Exp Res, 2012, 24(3): 218-226. DOI: 10.3275/7800.
[13]
LIU S Y, WANG C L, YANG Y, et al. Brain structure and perfusion in relation to serum renal function indexes in healthy young adults[J]. Brain Imaging Behav, 2022, 16(3): 1014-1025. DOI: 10.1007/s11682-021-00565-x.
[14]
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[15]
LIANG X, ZOU Q H, HE Y, et al. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain[J]. Proc Natl Acad Sci USA, 2013, 110(5): 1929-1934. DOI: 10.1073/pnas.1214900110.
[16]
BALLER E B, VALCARCEL A M, ADEBIMPE A, et al. Developmental coupling of cerebral blood flow and fMRI fluctuations in youth[J/OL]. Cell Rep, 2022, 38(13): 110576 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35354053/. DOI: 10.1016/j.celrep.2022.110576.
[17]
ZHU J J, ZHUO C J, XU L X, et al. Altered coupling between resting-state cerebral blood flow and functional connectivity in schizophrenia[J]. Schizophr Bull, 2017, 43(6): 1363-1374. DOI: 10.1093/schbul/sbx051.
[18]
KAPLAN L, CHOW B W, GU C H. Neuronal regulation of the blood-brain barrier and neurovascular coupling[J]. Nat Rev Neurosci, 2020, 21(8): 416-432. DOI: 10.1038/s41583-020-0322-2.
[19]
HUANG W H, XIA Q, ZHENG F F, et al. Microglia-mediated neurovascular unit dysfunction in Alzheimer's disease[J/OL]. J Alzheimers Dis, 2023, 94(s1): S335-S354 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36683511/. DOI: 10.3233/JAD-221064.
[20]
MCCONNELL H L, MISHRA A. Cells of the blood-brain barrier: an overview of the neurovascular unit in health and disease[J/OL]. Methods Mol Biol, 2022, 2492: 3-24 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35733036/. DOI: 10.1007/978-1-0716-2289-6_1.
[21]
BERNSTEIN H G, KEILHOFF G, STEINER J, et al. Nitric oxide and schizophrenia: present knowledge and emerging concepts of therapy[J]. CNS Neurol Disord Drug Targets, 2011, 10(7): 792-807. DOI: 10.2174/187152711798072392.
[22]
PITSIKAS N. The role of nitric oxide synthase inhibitors in schizophrenia[J]. Curr Med Chem, 2016, 23(24): 2692-2705. DOI: 10.2174/0929867323666160812151054.
[23]
MÜLLER N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations[J]. Schizophr Bull, 2018, 44(5): 973-982. DOI: 10.1093/schbul/sby024.
[24]
WANG N Y, YANG X, ZHAO Z, et al. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease[J/OL]. Front Mol Neurosci, 2023, 16: 1227493 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/37654789/. DOI: 10.3389/fnmol.2023.1227493.
[25]
ZHU W Q, LI X S, LI X H, et al. The protective impact of education on brain structure and function in Alzheimer's disease[J/OL]. BMC Neurol, 2021, 21(1): 423 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/34717581/. DOI: 10.1186/s12883-021-02445-9.
[26]
ARENAZA-URQUIJO E M, LANDEAU B, JOIE R L, et al. Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy Elders[J/OL]. Neuroimage, 2013, 83: 450-457 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/23796547/. DOI: 10.1016/j.neuroimage.2013.06.053.
[27]
FRANZMEIER N, TAYLOR A N W, et al. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment[J]. Brain Imaging Behav, 2017, 11(2): 368-382. DOI: 10.1007/s11682-016-9599-1.
[28]
XU L, LIU X L, CHEN Z Z, et al. Multi-index analysis of regional brain activity in patients with Alzheimer's disease during resting state[J]. Acta Anat Sin, 2023, 54(1): 75-81. DOI: 10.16098/j.issn.0529-1356.2023.01.011.
[29]
XIONG Z L, LI D X, WANG R P, et al. Study of fMRI on default brain network functional connectivity changes in different stages of Alzheimer's disease course[J]. Chin Imag J Integr Tradit West Med, 2022, 20(2): 107-111. DOI: 10.3969/j.issn.1672-0512.2022.02.002.
[30]
VANNINI P, LEHMANN C, DIERKS T, et al. Failure to modulate neural response to increased task demand in mild Alzheimer's disease: fMRI study of visuospatial processing[J]. Neurobiol Dis, 2008, 31(3): 287-297. DOI: 10.1016/j.nbd.2008.04.013.
[31]
ZHENG W M, CUI B, HAN Y, et al. Disrupted regional cerebral blood flow, functional activity and connectivity in Alzheimer's disease: a combined ASL perfusion and resting state fMRI study[J/OL]. Front Neurosci, 2019, 13: 738 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/31396033/. DOI: 10.3389/fnins.2019.00738.

PREV Value of intravoxel incoherent motion diffusion in the clinical diagnosis of Alzheimer,s disease
NEXT The effect of methadone maintenance treatment on degree centrality in heroin dependent patients: a resting state fMRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn