Share:
Share this content in WeChat
X
Clinical Article
The effect of methadone maintenance treatment on degree centrality in heroin dependent patients: a resting state fMRI study
CHEN Jiajie  WANG Zhidong  JIN Long  LI Wei  LI Qiang  Wang Wei  DAI Xiaofeng 

Cite this article as: CHEN J J, WANG Z D, JIN L, et al. The effect of methadone maintenance treatment on degree centrality in heroin dependent patients: a resting state fMRI study[J]. Chin J Magn Reson Imaging, 2024, 15(9): 47-52. DOI:10.12015/issn.1674-8034.2024.09.009.


[Abstract] Objective To explore the effect of methadone maintenance treatment (MMT) on the degree centrality (DC) of topological characteristics of heroin dependence (HD) and its correlation with psychological behavior.Materials and Methods A retrospective analysis was conducted on forty-one HD patients undergoing MMT program were recruited at Methadone Clinic in Baqiao District of Xi'an City from January 2016 to December 2017. The resting state functional magnetic resonance imaging (fMRI) data were collected. Protracted withdrawal symptoms and craving scores were assessed. The patients were followed longitudinally for one year. DC analysis was performed on the image data, and the paired sample t test was used for longitudinal comparison, and the correlation between different brain regions and psychological indicators was analyzed.Results There was significant difference in the scores of protracted withdrawal symptoms of HD patients after MMT for one year (Z=3.004, P=0.003), but there was no significant difference in the scores of cravings (Z=0.872, P=0.383). Compared with baseline, one year after MMT, the DC of the bilateral thalamus, caudate nucleus, putamen, and left pallidum decreased in HD patients (Gaussian random field correction, voxel level P<0.001, cluster level P<0.01, clusters sizes>95). The DC value of the right lingual gyrus and calcarine gyrus increased after the same correction method. The DC value of bilateral caudate nucleus and left pallidum was negatively correlated with withdrawal symptoms (r=-0.417, P=0.030; r=-0.392, P=0.043; r=-0.383, P=0.049), and the change of DC value of bilateral putamen nucleus and left pallidum was positively correlated with the change of craving (r=0.410, P=0.008; r=0.332, P=0.034; r=0.395, P=0.011).Conclusions Methadone may regulate the protracted withdrawal symptoms and psychological craving of HD patients by reducing the centrality of striatum in addiction reward brain network. It may inhibit impulsiveness and enhance the activity of the visual core brain area. These could provide imaging evidence for the neural mechanism of methadone in the treatment of HD patients.
[Keywords] heroin dependence;methadone;degree centrality;corpus striatum;reward;craving;magnetic resonance imaging

CHEN Jiajie1   WANG Zhidong1   JIN Long1   LI Wei1   LI Qiang1   Wang Wei2   DAI Xiaofeng3*  

1 Department of Diagnostic Radiology, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Chian

2 Department of Nuclear Medicine, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China

3 Department of Medical Imaging, 96604 Military Hospital of China People's Liberation Army, Lanzhou 730030, China

Corresponding author: DAI X F, E-mail: 154458713@qq.com

Conflicts of interest   None.

Received  2024-02-20
Accepted  2024-09-02
DOI: 10.12015/issn.1674-8034.2024.09.009
Cite this article as: CHEN J J, WANG Z D, JIN L, et al. The effect of methadone maintenance treatment on degree centrality in heroin dependent patients: a resting state fMRI study[J]. Chin J Magn Reson Imaging, 2024, 15(9): 47-52. DOI:10.12015/issn.1674-8034.2024.09.009.

[1]
TOLOMEO S, STEELE J D, EKHTIARI H, et al. Chronic heroin use disorder and the brain: current evidence and future implications[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 111: 110148 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/33169674/. DOI: 10.1016/j.pnpbp.2020.110148.
[2]
WANG S C. Historical review: opiate addiction and opioid receptors[J]. Cell Transplant, 2019, 28(3): 233-238. DOI: 10.1177/0963689718811060.
[3]
MCNAIR R, MONAGHAN M, MONTGOMERY P. Heroin assisted treatment for key health outcomes in people with chronic heroin addictions: a context-focused systematic review[J/OL]. Drug Alcohol Depend, 2023, 247: 109869 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/37086659/. DOI: 10.1016/j.drugalcdep.2023.109869.
[4]
TRAN B X, MOIR M, NGUYEN T M T, et al. Changes in quality of life and its associated factors among illicit drug users in Vietnamese mountainous provinces: a 12-month follow-up study[J/OL]. Subst Abuse Treat Prev Policy, 2020, 15(1): 23 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/32188457/. DOI: 10.1186/s13011-020-00265-7.
[5]
CHEN T Z, ZHONG N, DU J, et al. Polydrug use patterns and their impact on relapse among heroin-dependent patients in Shanghai, China[J]. Addiction, 2019, 114(2): 259-267. DOI: 10.1111/add.14451.
[6]
MOHSENI F, RAHIMI K, NIROUMAND SARVANDANI M, et al. Lapse and relapse rates in narcotics anonymous versus methadone maintenance treatment: a 12-month prospective study[J]. Iran J Psychiatry, 2022, 17(1): 1-13. DOI: 10.18502/ijps.v17i1.8044.
[7]
ALONSO-CARABALLO Y, GUHA S K, CHARTOFF E H. The neurobiology of abstinence-induced reward-seeking in males and females[J/OL]. Pharmacol Biochem Behav, 2021, 200: 173088 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/33333134/. DOI: 10.1016/j.pbb.2020.173088.
[8]
XUE J H, CHEN J J, WANG S, et al. Assessing brain activity in male heroin-dependent individuals under methadone maintenance treatment: a resting-state fMRI study[J/OL]. Psychiatry Res Neuroimaging, 2022, 320: 111431 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/35007942/. DOI: 10.1016/j.pscychresns.2021.111431.
[9]
ZHU J, WANG S, LIU Y, et al. The influence of methadone on cerebral gray matter and functional connectivity[J]. Ann Palliat Med, 2021, 10(9): 9497-9507. DOI: 10.21037/apm-21-2012.
[10]
TOLOMEO S, GRAY S, MATTHEWS K, et al. Multifaceted impairments in impulsivity and brain structural abnormalities in opioid dependence and abstinence[J]. Psychol Med, 2016, 46(13): 2841-2853. DOI: 10.1017/S0033291716001513.
[11]
CHEN J J, LI Y B, WANG S, et al. Methadone maintenance treatment alters couplings of default mode and salience networks in individuals with heroin use disorder: a longitudinal self-controlled resting-state fMRI study[J/OL]. Front Psychiatry, 2023, 14: 1132407 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/37139328/. DOI: 10.3389/fpsyt.2023.1132407.
[12]
TELESFORD Q K, SIMPSON S L, BURDETTE J H, et al. The brain as a complex system: using network science as a tool for understanding the brain[J]. Brain Connect, 2011, 1(4): 295-308. DOI: 10.1089/brain.2011.0055.
[13]
XUE J H, CHEN J J, CAI G K, et al. Degree centrality of brain network in heroin addicts treated with methadone maintenance: a resting-state functional magnetic resonance imaging study[J]. Chin J Magn Reson Imag, 2020, 11(11): 961-965. DOI: 10.12015/issn.1674-8034.2020.11.001.
[14]
WANG L, HU F, LI W, et al. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment[J]. Psychol Med, 2023, 53(6): 2216-2228. DOI: 10.1017/S0033291721003937.
[15]
LIU W, CHEN J J, SHI H, et al. Assessing difference in brain function between heroin dependents after one year methadone maintenance treatment and protracted abstinence: a resting-state fMRI study[J]. Chin J Magn Reson Imag, 2019, 10(12): 890-894. DOI: 10.12015/issn.1674-8034.2019.12.003.
[16]
ZHANG K, JIANG H F, ZHANG Q Y, et al. Brain-derived neurotrophic factor serum levels in heroin-dependent patients after 26weeks of withdrawal[J]. Compr Psychiatry, 2016, 65: 150-155. DOI: 10.1016/j.comppsych.2015.11.010.
[17]
JIN L, YUAN M H, ZHANG W, et al. Default mode network mechanisms of repeated transcranial magnetic stimulation in heroin addiction[J]. Brain Imaging Behav, 2023, 17(1): 54-65. DOI: 10.1007/s11682-022-00741-7.
[18]
SCHMIDT A, VOGEL M, BAUMGARTNER S, et al. Brain volume changes after long-term injectable opioid treatment: a longitudinal voxel-based morphometry study[J/OL]. Addict Biol, 2021, 26(4): e12970 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/33000891/. DOI: 10.1111/adb.12970.
[19]
SCHMIDT A, DENIER N, MAGON S, et al. Increased functional connectivity in the resting-state basal Ganglia network after acute heroin substitution[J/OL]. Transl Psychiatry, 2015, 5(3): e533 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/25803496/. DOI: 10.1038/tp.2015.28.
[20]
VALENTINO R J, NAIR S G, VOLKOW N D. Neuroscience in addiction research[J]. J Neural Transm, 2024, 131(5): 453-459. DOI: 10.1007/s00702-023-02713-7.
[21]
KOOB G F, VOLKOW N D. Neurobiology of addiction: a neurocircuitry analysis[J]. Lancet Psychiatry, 2016, 3(8): 760-773. DOI: 10.1016/S2215-0366(16)00104-8.
[22]
VOLKOW N D, WANG G J, FOWLER J S, et al. Addiction: beyond dopamine reward circuitry[J]. Proc Natl Acad Sci U S A, 2011, 108(37): 15037-15042. DOI: 10.1073/pnas.1010654108.
[23]
ROOT D H, MELENDEZ R I, ZABORSZKY L, et al. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors[J]. Prog Neurobiol, 2015, 130: 29-70. DOI: 10.1016/j.pneurobio.2015.03.005.
[24]
HO C Y, BERRIDGE K C. An orexin hotspot in ventral pallidum amplifies hedonic 'liking' for sweetness[J]. Neuropsychopharmacology, 2013, 38(9): 1655-1664. DOI: 10.1038/npp.2013.62.
[25]
TOOLEY J, MARCONI L, ALIPIO J B, et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking[J]. Biol Psychiatry, 2018, 83(12): 1012-1023. DOI: 10.1016/j.biopsych.2018.01.003.
[26]
KUPCHIK Y M, PRASAD A A. Ventral pallidum cellular and pathway specificity in drug seeking[J]. Neurosci Biobehav Rev, 2021, 131: 373-386. DOI: 10.1016/j.neubiorev.2021.09.007.
[27]
KLEINHANS N M, SWEIGERT J, BLAKE M, et al. FMRI activation to cannabis odor cues is altered in individuals at risk for a cannabis use disorder[J/OL]. Brain Behav, 2020, 10(10): e01764 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/32862560/. DOI: 10.1002/brb3.1764.
[28]
MOHAMMADKHANI A, FRAGALE J E, PANTAZIS C B, et al. Orexin-1 receptor signaling in ventral Pallidum regulates motivation for the opioid remifentanil[J]. J Neurosci, 2019, 39(49): 9831-9840. DOI: 10.1523/JNEUROSCI.0255-19.2019.
[29]
ZHOU K K, ZHU L, HOU G Q, et al. The contribution of thalamic nuclei in salience processing[J/OL]. Front Behav Neurosci, 2021, 15: 634618 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/33664657/. DOI: 10.3389/fnbeh.2021.634618.
[30]
MILLAN E Z, ONG Z, MCNALLY G P. Paraventricular thalamus: gateway to feeding, appetitive motivation, and drug addiction[J]. Prog Brain Res, 2017, 235: 113-137. DOI: 10.1016/bs.pbr.2017.07.006.
[31]
ZHU Y J, WIENECKE C F, NACHTRAB G, et al. A thalamic input to the nucleus accumbens mediates opiate dependence[J]. Nature, 2016, 530(7589): 219-222. DOI: 10.1038/nature16954.
[32]
LIU S, WANG S C, ZHANG M, et al. Brain responses to drug cues predict craving changes in abstinent heroin users: a preliminary study[J/OL]. Neuroimage, 2021, 237: 118169 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/34000396/. DOI: 10.1016/j.neuroimage.2021.118169.
[33]
KEYES P C, ADAMS E L, CHEN Z J, et al. Orchestrating opiate-associated memories in thalamic circuits[J/OL]. Neuron, 2022, 110(20): 3406 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/32679036/. DOI: 10.1016/j.neuron.2022.09.031.
[34]
GIANNOTTI G, GONG S, FAYETTE N, et al. Extinction blunts paraventricular thalamic contributions to heroin relapse[J/OL]. Cell Rep, 2021, 36(8): 109605 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/34433067/. DOI: 10.1016/j.celrep.2021.109605.
[35]
DEVITO E E, KOBER H, CARROLL K M, et al. fMRI Stroop and behavioral treatment for cocaine-dependence: preliminary findings in methadone-maintained individuals[J]. Addict Behav, 2019, 89: 10-14. DOI: 10.1016/j.addbeh.2018.09.005.
[36]
PANICCIA J E, VOLLMER K M, GREEN L M, et al. Restoration of a paraventricular thalamo-accumbal behavioral suppression circuit prevents reinstatement of heroin seeking[J/OL]. Neuron, 2024, 112(5): 772-785.e9 [2024-08-28]. https://pubmed.ncbi.nlm.nih.gov/38141605/. DOI: 10.1016/j.neuron.2023.11.024.
[37]
SUN Y, CHANG S H, LIU Z, et al. Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence[J]. Mol Psychiatry, 2021, 26(4): 1152-1161. DOI: 10.1038/s41380-019-0497-y.
[38]
LI M, TIAN J Z, ZHANG R B, et al. Abnormal cortical thickness in heroin-dependent individuals[J]. NeuroImage, 2014, 88: 295-307. DOI: 10.1016/j.neuroimage.2013.10.021.
[39]
WEI X, LI W, CHEN J J, et al. Assessing drug cue-induced brain response in heroin dependents treated by methadone maintenance and protracted abstinence measures[J]. Brain Imaging Behav, 2020, 14(4): 1221-1229. DOI: 10.1007/s11682-019-00051-5.
[40]
LI Y B, LI Q, LI W, et al. The polymorphism of dopamine D2 receptor TaqIA gene is associated with brain response to drug cues in male heroin-dependent individuals during methadone maintenance treatment[J]. Drug Alcohol Depend, 2019, 198: 150-157. DOI: 10.1016/j.drugalcdep.2019.01.028.
[41]
MO S F, FENG S H, CHEN H B. Research on the rest functional magnetic resonance imaging before and after smoking cessation[J]. J Biomed Eng, 2018, 35(1): 87-91. DOI: 10.7507/1001-5515.201609026.

PREV Correlation of cognitive reserve, neurovascular coupling and cognitive function in patients with mild cognitive impairment
NEXT Relationship between orbital tissues and diplopia in thyroid-associated ophthalmopathy based on MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn