Share:
Share this content in WeChat
X
Clinical Article
Relationship between orbital tissues and diplopia in thyroid-associated ophthalmopathy based on MRI
SHI Guifeng  DUAN Yongbo  HUANG Kai  LIU Dan  CHEN Haixiong 

Cite this article as: SHI G F, DUAN Y B, HUANG K, et al. Relationship between orbital tissues and diplopia in thyroid-associated ophthalmopathy based on MRI[J]. Chin J Magn Reson Imaging, 2024, 15(9): 53-59, 67. DOI:10.12015/issn.1674-8034.2024.09.010.


[Abstract] Objective To explore the correlation between extraocular muscles, orbital fat, and thyroid-associated ophthalmopathy (TAO) diplopia using MRI technology.Materials and Methods The subjects of the study included the TAO diplopia group (79 cases, 157 eyes), the TAO non-diplopia group (36 cases, 72 eyes) and the normal control group (30 cases, 60 eyes). The extraocular muscle thickness, extraocular muscle volume (EMV), extraocular muscle-to-white matter signal intensity ratio (SIR), intraorbital fat volume (FV), and orbital volume (OV) of the study subjects were measured, and clinical and laboratory data were collected, including age, gender, smoking history, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroglobulin (TG), thyroxine receptor antibody (TRAb), anti-thyroglobulin antibody (anti-TGAb) and anti-thyroid peroxidase utoantibody (anti-TPOAb). One-way analysis of variance, Mann-Whitney U test, Kruskal-Wallis H test and chi-square test were used to compare the baseline data, clinical indicators and imaging parameters of the three groups. Then univariate and multivariate logistic regression analysis were used to analyze the independent risk factors of TAO diplopia, and the receiver operating characteristics (ROC) curves were plotted to evaluate the diagnostic value of risk factors.Results There were statistically significant differences in age, superior rectus thickness (SR-T), inferior rectus thickness (IR-T), medial rectus thickness (MR-T), lateral rectus thickness (LR-T), EMV, FV/OV, SIRmean, and SIRmax between TAO diplopia, TAO non-diplopia, and normal control groups (P<0.05). There were statistically significant differences in the distribution of IR-T, MR-T, FV/OV, EMV, and SIRmax between TAO diplopia and TAO non-diplopia (P<0.05). There was no statistically significant difference in SR-T, LR-T, and SIRmean (P>0.05), and there was also a statistically significant difference between TAO diplopia and TAO non-diplopia in TSH and TRAb (P<0.05). Univariate and multivariate logistic regression analysis showed that TRAb, FV/OV and EMV were independent risk factors of TAO diplopia, and the receiver operating characteristic (ROC) curve was plotted to analyze the diagnostic efficacy of individual and combined indicators for TAO diplopia. The ROC analysis showed that the combined index had the best diagnostic efficacy, AUC=0.853 (95% confidence interval: 0.792-0.915) (P<0.001), sensitivity was 82.7%, and specificity was 79.6%, the Yoden index is 0.623.Conclusions TAO diplopia is not only related to the enlargement of extraocular muscles and SIR values mentioned in previous studies, but also closely related to the volume of intraorbital fat. Comprehensive analysis of extraocular muscles and orbital fat can provide a more comprehensive and objective basis for clinical practice, which is helpful for clinical selection of appropriate treatment options.
[Keywords] thyroid-associated ophthalmopathy;diplopia;extraocular muscles;fat volume;magnetic resonance imaging

SHI Guifeng1, 2   DUAN Yongbo3   HUANG Kai1, 2   LIU Dan1, 2   CHEN Haixiong2*  

1 The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China

2 Department of Radiology, Shunde Hospital of Southern Medical University (First People's Hospital of Shunde District, Foshan City), FoShan 528300, China

3 Department of Ophthalmology, Shunde Hospital of Southern Medical University (First People's Hospital of Shunde District, Foshan City), Foshan 528300, China

Corresponding author: CHEN H X, E-mail: 13825553451@139.com

Conflicts of interest   None.

Received  2024-05-07
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.010
Cite this article as: SHI G F, DUAN Y B, HUANG K, et al. Relationship between orbital tissues and diplopia in thyroid-associated ophthalmopathy based on MRI[J]. Chin J Magn Reson Imaging, 2024, 15(9): 53-59, 67. DOI:10.12015/issn.1674-8034.2024.09.010.

[1]
HUANG J C, CHEN M, LIANG Y, et al. Integrative metabolic analysis of orbital adipose/connective tissue in patients with thyroid-associated ophthalmopathy[J/OL]. Front Endocrinol, 2022, 13: 1001349 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36465658/. DOI: 10.3389/fendo.2022.1001349.
[2]
LI Z H, WANG M, TAN J, et al. Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy[J/OL]. Cell Rep Med, 2022, 3(8): 100699 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35896115/. DOI: 10.1016/j.xcrm.2022.100699.
[3]
BARTALENA L, PIANTANIDA E, GALLO D, et al. Epidemiology, natural history, risk factors, and prevention of Graves' orbitopathy[J/OL]. Front Endocrinol, 2020, 11: 615993 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33329408/. DOI: 10.3389/fendo.2020.615993.
[4]
YE H J, SUN A Q, XIAO W, et al. Differential circular RNA expression profiling of orbital connective tissue from patients with type I and type Ⅱ thyroid-associated ophthalmopathy[J/OL]. Invest Ophthalmol Vis Sci, 2022, 63(12): 27 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36409215/. DOI: 10.1167/iovs.63.12.27.
[5]
LAI K K H, ALJUFAIRI F M A A, LI C L, et al. Efficacy and safety of 6-weekly versus 12-weekly intravenous methylprednisolone in moderate-to-severe active thyroid-associated ophthalmopathy[J/OL]. J Clin Med, 2023, 12(9): 3244 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/37176682/. DOI: 10.3390/jcm12093244.
[6]
BARTALENA L, TANDA M L. Current concepts regarding Graves' orbitopathy[J]. J Intern Med, 2022, 292(5): 692-716. DOI: 10.1111/joim.13524.
[7]
SMITH T J, COCKERHAM K, LELLI G, et al. Utility assessment of moderate to severe thyroid eye disease health states[J]. JAMA Ophthalmol, 2023, 141(2): 159-166. DOI: 10.1001/jamaophthalmol.2022.3225.
[8]
LOIUDICE P, PELLEGRINI M, MARINÒ M, et al. Choroidal vascularity index in thyroid-associated ophthalmopathy: a cross-sectional study[J/OL]. Eye Vis, 2021, 8(1): 18 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33926559/. DOI: 10.1186/s40662-021-00242-6.
[9]
BARTLEY G B, FATOURECHI V, KADRMAS E F, et al. Clinical features of Graves' ophthalmopathy in an incidence cohort[J]. Am J Ophthalmol, 1996, 121(3): 284-290. DOI: 10.1016/s0002-9394(14)70276-4.
[10]
COCKERHAM K P, PADNICK-SILVER L, STUERTZ N, et al. Quality of life in patients with chronic thyroid eye disease in the United States[J]. Ophthalmol Ther, 2021, 10(4): 975-987. DOI: 10.1007/s40123-021-00385-8.
[11]
LEE H J, KIM S J. Thyroid autoantibodies in adults with acquired binocular diplopia of unknown origin[J/OL]. Sci Rep, 2020, 10(1): 5399 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/32214213/. DOI: 10.1038/s41598-020-62451-8.
[12]
SMITH T J, JANSSEN J A M J L. Insulin-like growth factor-I receptor and thyroid-associated ophthalmopathy[J]. Endocr Rev, 2019, 40(1): 236-267. DOI: 10.1210/er.2018-00066.
[13]
SAVINO G, MATTEI R, SALERNI A, et al. Long-term follow-up of surgical treatment of thyroid-associated orbitopathy restrictive strabismus[J/OL]. Front Endocrinol, 2022, 13: 1030422 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36440235/. DOI: 10.3389/fendo.2022.1030422.
[14]
WANG Y Y, HU H, CHEN L, et al. Observation study of using a small dose of rituximab treatment for thyroid-associated ophthalmopathy in seven Chinese patients: one pilot study[J/OL]. Front Endocrinol, 2022, 13: 1079852 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36743915/. DOI: 10.3389/fendo.2022.1079852.
[15]
YANG M, DU B X, WANG Y J, et al. Clinical analysis of 2 170 cases of thyroid-associated ophthalmopathy involving extraocular muscles[J]. J Sichuan Univ Med Sci Ed, 2021, 52(3): 510-515. DOI: 10.12182/20210560507.
[16]
BARTLEY G B, GORMAN C A. Diagnostic criteria for Graves' ophthalmopathy[J]. Am J Ophthalmol, 1995, 119(6): 792-795. DOI: 10.1016/s0002-9394(14)72787-4.
[17]
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chinese Medical Association, Thyroid Group of Chinese Society of Endocrinology of Chinese Medical Association. Chinese guideline on the diagnosis and treatment of thyroid-associated ophthalmopathy (2022)[J]. Chin J Ophthalmol, 2022, 58(9): 646-668. DOI: 10.3760/cma.j.cn112142-20220421-00201.
[18]
HU H, CHEN L, ZHANG J L, et al. T2-weighted MR imaging-derived radiomics for pretreatment determination of therapeutic response to glucocorticoid in patients with thyroid-associated ophthalmopathy: comparison with semiquantitative evaluation[J]. J Magn Reson Imaging, 2022, 56(3): 862-872. DOI: 10.1002/jmri.28088.
[19]
CHEN L, CHEN W, CHEN H H, et al. Radiological staging of thyroid-associated ophthalmopathy: comparison of T1 mapping with conventional MRI[J/OL]. Int J Endocrinol, 2020, 2020: 2575710 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33144856/. DOI: 10.1155/2020/2575710.
[20]
HU H, CHEN L, ZHOU J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35405579/. DOI: 10.1016/j.ejrad.2022.110295.
[21]
SONG C, LUO Y S, YU G F, et al. Current insights of applying MRI in Graves' ophthalmopathy[J/OL]. Front Endocrinol, 2022, 13: 991588 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36267571/. DOI: 10.3389/fendo.2022.991588.
[22]
CHENG J Y, ZHANG X Y, LIAN J X, et al. Evaluation of activity of Graves' orbitopathy with multiparameter orbital magnetic resonance imaging (MRI)[J]. Quant Imaging Med Surg, 2023, 13(5): 3040-3049. DOI: 10.21037/qims-22-814.
[23]
LECLER A. Expanding diagnostic tools for dysthyroid optic neuropathy: how quantitative MRI can be used to visualize and measure orbital inflammation[J]. Eur Radiol, 2021, 31(10): 7417-7418. DOI: 10.1007/s00330-021-08208-x.
[24]
HIGASHIYAMA T, IWASA M, OHJI M. Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity[J/OL]. Sci Rep, 2017, 7(1): 16874 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/29203853/. DOI: 10.1038/s41598-017-17257-6.
[25]
ZHENG Y H, YANG S S, CHEN X Y, et al. The Correlation between Type 2 Diabetes and Fat Fraction in Liver and Pancreas: a Study using MR Dixon Technique[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 7073647 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36685051/. DOI: 10.1155/2022/7073647.
[26]
OLLITRAULT A, CHARBONNEAU F, HERDAN M L, et al. Dixon-T2WI magnetic resonance imaging at 3tesla outperforms conventional imaging for thyroid eye disease[J]. Eur Radiol, 2021, 31(7): 5198-5205. DOI: 10.1007/s00330-020-07540-y.
[27]
CHEN L, HU H, CHEN H H, et al. Usefulness of two-point Dixon T2-weighted imaging in thyroid-associated ophthalmopathy: comparison with conventional fat saturation imaging in fat suppression quality and staging performance[J/OL]. Br J Radiol, 2021, 94(1118): 20200884 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/33353397/. DOI: 10.1259/bjr.20200884.
[28]
HUANG K, LIN X X, LUO X S, et al. Comparative study on the application of Dixon and SPAIR in thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imag, 2023, 14(7): 51-57. DOI: 10.12015/issn.1674-8034.2023.08.008.
[29]
HUANG Y S. To explore the clinical characteristics of Graves ophthalmopathy patients and the evaluation value of MRI[D].Guangzhou: Southern Medical University, 2023. DOI: 10.27003/d.cnki.gojyu.2023.000725.
[30]
KIM J A, VELEZ F G, PINELES S L. Strabismus surgery in patients with ocular neuromyotonia: potential unmasking of the condition and effective management tool[J]. J Neuroophthalmol, 2016, 36(3): 259-263. DOI: 10.1097/WNO.0000000000000371.
[31]
PADUNGKIATSAGUL T, JINDAHRA P, POONYATHALANG A, et al. Bilateral oculomotor ocular neuromyotonia: a case report[J/OL]. BMC Neurol, 2018, 18(1): 137 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/30176815/. DOI: 10.1186/s12883-018-1142-0.
[32]
CHATZISTEFANOU K I, BROUZAS D, ASPROUDIS I, et al. Strabismus surgery for diplopia in chronic progressive external ophthalmoplegia[J]. Int Ophthalmol, 2019, 39(1): 213-217. DOI: 10.1007/s10792-017-0781-2.
[33]
LI R, LI J, WANG Z C. Diffusion tensor imaging technology to quantitatively assess abnormal changes in patients with thyroid-associated ophthalmopathy[J/OL]. Front Hum Neurosci, 2022, 15: 805945 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/35185495/. DOI: 10.3389/fnhum.2021.805945.
[34]
ZHENG J Y, DUAN H H, YOU S F, et al. Research progress on the pathogenesis of Graves' ophthalmopathy: based on immunity, noncoding RNA and exosomes[J/OL]. Front Immunol, 2022, 13: 952954 [2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/36081502/. DOI: 10.3389/fimmu.2022.952954.
[35]
MEYER P, DAS T, GHADIRI N, et al. Clinical pathophysiology of thyroid eye disease: the Cone Model[J]. Eye, 2019, 33(2): 244-253. DOI: 10.1038/s41433-018-0302-1.
[36]
NAGY E V, TOTH J, KALDI I, et al. Graves' ophthalmopathy: eye muscle involvement in patients with diplopia[J]. Eur J Endocrinol, 2000, 142(6): 591-597. DOI: 10.1530/eje.0.1420591.

PREV The effect of methadone maintenance treatment on degree centrality in heroin dependent patients: a resting state fMRI study
NEXT Value of cardiac magnetic resonance left atrial strain analysis based on tissue feature tracking in the assessment of left ventricular diastolic dysfunction in hypertrophic cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn