Share:
Share this content in WeChat
X
Clinical Article
Application of high b-value DWI generated based on diffusion model to assess local recurrence after radical treatment of prostate cancer
DENG Wenyou  GUO Xiaofang  HU Kui  HU Lei 

Cite this article as: DENG W Y, GUO X F, HU K, et al. Application of high b-value DWI generated based on diffusion model to assess local recurrence after radical treatment of prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(9): 86-93. DOI:10.12015/issn.1674-8034.2024.09.015.


[Abstract] Objective To investigate the value of generating high b-value diffusion weighted imaging (DWI) based on diffusion model for the assessment of local recurrence after radical treatment of prostate cancer.Materials and Methods Retrospective analysis of the clinical and imaging data of 63 patients with biochemical recurrence (BCR) after radical radiotherapy (RT) or radical prostatectomy (RP) for prostate cancer, including 21 patients in the RT group and 42 patients in the RP group. DWI images calculated using the patient's initial apparent diffusion coefficient (ADC) maps were input into the prostate DWI generated model to obtain the generated high b-value (b=2000 s/mm2) DWI maps. The image quality of the calculated DWI and the generated DWI was evaluated by 3 readers, and the risk of recurrence was scored in all cases according to the Prostate Imaging for Recurrence Reporting (PI-RR) system score. Multi-reader multi-case receiver operating characteristic (MRMC-ROC) curve were used to compare the differences in diagnostic efficacy between different readers. Grade score agreement was tested using intragroup correlation coefficients.Results All three readers rated the image quality of the generated DWI group better than that of the calculated DWI group (P=0.002, 0.003, 0.002). The difference in the total PI-RR scores between the generated DWI and calculated DWI groups of the RT group by the three readers was statistically significant (P=0.031, 0.049, 0.041). The difference in PI-RR total score between the generated DWI and calculated DWI groups was statistically significant (P=0.034, 0.049, 0.036). The range of area under the curve (AUC) values for PI-RR total score prediction of the occurrence of localized recurrence in the RT and RP groups by the three readers using the generated DWI was categorized as 0.884-0.924 and 0.926-0.947; the range of AUC value for PI- RR total score prediction of the occurrence of local recurrence in the RT and RP groups by the three readers using the calculated DWI was categorized as 0.783-0.792 and 0.843-0.893. After combining the cases in RT and RP groups, the PI-RR total score was used to predict the status of local recurrence in all the patients, and the range of AUC values for the generated DWI group and the calculated DWI group were 0.912-0.930 and 0.797-0.858.Conclusions High b-value DWI generated based on the diffusion model can significantly improve the diagnostic efficacy of local recurrence after radical treatment of prostate cancer.
[Keywords] prostate cancer;magnetic resonance imaging;diffusion model;diffusion weighted imaging;radical treatment;local recurrence

DENG Wenyou1   GUO Xiaofang1   HU Kui1   HU Lei2*  

1 Department of Radiology, Hubei Cancer Hospital, Wuhan 430079, China

2 Department of Radiology, Guangdong Provincial People's Hospital, Guangzhou 510080, China

Corresponding author: HU L, E-mail: hulei@gdph.org.cn

Conflicts of interest   None.

Received  2024-05-15
Accepted  2024-08-09
DOI: 10.12015/issn.1674-8034.2024.09.015
Cite this article as: DENG W Y, GUO X F, HU K, et al. Application of high b-value DWI generated based on diffusion model to assess local recurrence after radical treatment of prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(9): 86-93. DOI:10.12015/issn.1674-8034.2024.09.015.

[1]
FENG C Y, ZHANG P P, MIN X D. Research progress of magnetic resonance imaging in predicting biochemical recurrence of prostate cancer after radical prostatectomy[J]. Chin J Magn Reson Imag, 2023, 14(5): 186-190, 202. DOI: 10.12015/issn.1674-8034.2023.05.033.
[2]
SCHAEFFER E, SRINIVAS S, ANTONARAKIS E S, et al. NCCN guidelines insights: prostate cancer, version 1.2021[J]. J Natl Compr Canc Netw, 2021, 19(2): 134-143. DOI: 10.6004/jnccn.2021.0008.
[3]
MOTTET N, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[4]
LUKER G D. Imaging biochemical recurrence in prostate cancer[J/OL]. Radiol Imaging Cancer, 2021, 3(4): e219015 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/34328353/. DOI: 10.1148/rycan.2021219015.
[5]
PISANSKY T M, THOMPSON I M, VALICENTI R K, et al. Adjuvant and salvage radiotherapy after prostatectomy: ASTRO/AUA guideline amendment 2018-2019[J]. J Urol, 2019, 202(3): 533-538. DOI: 10.1097/JU.0000000000000295.
[6]
HU C H, QIAO X M, HUANG R P, et al. Development and validation of a multimodality model based on whole-slide imaging and biparametric MRI for predicting postoperative biochemical recurrence in prostate cancer[J/OL]. Radiol Imaging Cancer, 2024, 6(3): e230143 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/38758079/. DOI: 10.1148/rycan.230143.
[7]
LUZZAGO S, COLOMBO A, MISTRETTA F A, et al. Multiparametric MRI-based 5-year risk prediction model for biochemical recurrence of prostate cancer after radical prostatectomy[J/OL]. Radiology, 2023, 309(2): e223349 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37987657/. DOI: 10.1148/radiol.223349.
[8]
CICCARESE F, CORCIONI B, BIANCHI L, et al. Clinical application of the new Prostate Imaging for Recurrence Reporting (PI-RR) score proposed to evaluate the local recurrence of prostate cancer after radical prostatectomy[J/OL]. Cancers, 2022, 14(19): 4725 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/36230647/. DOI: 10.3390/cancers14194725.
[9]
HAIDER M A. It's time for a standardized MRI assessment scheme for prostate cancer recurrence[J]. Radiology, 2022, 304(2): 351-352. DOI: 10.1148/radiol.220701.
[10]
PANEBIANCO V, VILLEIRS G, WEINREB J C, et al. Prostate magnetic resonance imaging for local recurrence reporting (PI-RR): international consensus-based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy[J]. Eur Urol Oncol, 2021, 4(6): 868-876. DOI: 10.1016/j.euo.2021.01.003.
[11]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[12]
TURKBEY B. Better image quality for diffusion-weighted MRI of the prostate using deep learning[J]. Radiology, 2022, 303(2): 382-383. DOI: 10.1148/radiol.212078.
[13]
Working Group of Prostate Disease of Chinese Journal of Radiology, Editorial Board of Chinese Journal of Radiology. Consensus on MRI examination and diagnosis of prostate cancer (second edition)[J]. Chin J Radiol, 2018, 52(10): 743-750. DOI: 10.3760/cma.j.issn.1005-1201.2018.10.005.
[14]
BISCHOFF L M, PEETERS J M, WEINHOLD L, et al. Deep learning super-resolution reconstruction for fast and motion-robust T2-weighted prostate MRI[J/OL]. Radiology, 2023, 308(3): e230427 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37750774/. DOI: 10.1148/radiol.230427.
[15]
PARK J C, PARK K J, PARK M Y, et al. Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy[J]. J Magn Reson Imaging, 2022, 55(6): 1735-1744. DOI: 10.1002/jmri.27992.
[16]
TAJIMA T, AKAI H, SUGAWARA H, et al. Feasibility of accelerated whole-body diffusion-weighted imaging using a deep learning-based noise-reduction technique in patients with prostate cancer[J]. Magn Reson Imaging, 2022, 92: 169-179. DOI: 10.1016/j.mri.2022.06.014.
[17]
JEONG J, YEOM S K, CHOI I Y, et al. Deep learning image reconstruction of diffusion-weighted imaging in evaluation of prostate cancer focusing on its clinical implications[J]. Quant Imaging Med Surg, 2024, 14(5): 3432-3446. DOI: 10.21037/qims-23-1379.
[18]
LIN Y, YILMAZ E C, BELUE M J, et al. Evaluation of a cascaded deep learning-based algorithm for prostate lesion detection at biparametric MRI[J/OL]. Radiology, 2024, 311(2): e230750 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/38713024/. DOI: 10.1148/radiol.230750.
[19]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097.
[20]
HU L, ZHOU D W, ZHA Y F, et al. Synthesizing high-b-value diffusion-weighted imaging of the prostate using generative adversarial networks[J/OL]. Radiol Artif Intell, 2021, 3(5): e200237 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/34617025/. DOI: 10.1148/ryai.2021200237.
[21]
EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system[J]. Am J Surg Pathol, 2016, 40(2): 244-252. DOI: 10.1097/PAS.0000000000000530.
[22]
PRIVÉ B M, ISRAËL B, JANSSEN M J R, et al. Multiparametric MRI and 18F-PSMA-1007 PET/CT for the detection of clinically significant prostate cancer[J/OL]. Radiology, 2024, 311(2): e231879 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/38771185/. DOI: 10.1148/radiol.231879.
[23]
PECORARO M, TURKBEY B, PURYSKO A S, et al. Diagnostic accuracy and observer agreement of the MRI Prostate Imaging for Recurrence Reporting assessment score[J]. Radiology, 2022, 304(2): 342-350. DOI: 10.1148/radiol.212252.
[24]
ISRAËL B, LEEST M V, SEDELAAR M, et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. part 2: interpretation[J]. Eur Urol, 2020, 77(4): 469-480. DOI: 10.1016/j.eururo.2019.10.024.
[25]
MAAS M C, FÜTTERER J J, SCHEENEN T W J. Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate[J]. Invest Radiol, 2013, 48(11): 779-786. DOI: 10.1097/RLI.0b013e31829705bb.
[26]
KAZEROUNI A, AGHDAM E K, HEIDARI M, et al. Diffusion models in medical imaging: a comprehensive survey[J/OL]. Med Image Anal, 2023, 88: 102846 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37295311/. DOI: 10.1016/j.media.2023.102846.
[27]
KHADER F, MÜLLER-FRANZES G, TAYEBI ARASTEH S, et al. Denoising diffusion probabilistic models for 3D medical image generation[J/OL]. Sci Rep, 2023, 13(1): 7303 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37147413/. DOI: 10.1038/s41598-023-34341-2.
[28]
ESCHWEILER D, YILMAZ R, BAUMANN M, et al. Denoising diffusion probabilistic models for generation of realistic fully-annotated microscopy image datasets[J/OL]. PLoS Comput Biol, 2024, 20(2): e1011890 [2024-07-09]. https://pubmed.ncbi.nlm.nih.gov/38377165/. DOI: 10.1371/journal.pcbi.1011890.
[29]
GUO Z Y, LIU J, WANG Y L, et al. Diffusion models in bioinformatics and computational biology[J]. Nat Rev Bioeng, 2024, 2(2): 136-154. DOI: 10.1038/s44222-023-00114-9.
[30]
HU L, ZHOU D W, FU C X, et al. Calculation of apparent diffusion coefficients in prostate cancer using deep learning algorithms: a pilot study[J/OL]. Front Oncol, 2021, 11: 697721 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/34568027/. DOI: 10.3389/fonc.2021.697721.
[31]
WERNER S, ZINSSER D, ESSER M, et al. Enhanced image processing using complex averaging in diffusion-weighted imaging of the prostate: the impact on image quality and lesion detectability[J/OL]. Diagnostics, 2023, 13(14): 2325 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37510071/. DOI: 10.3390/diagnostics13142325.
[32]
ABREU-GOMEZ J, DIAS A B, GHAI S. PI-RR: the Prostate Imaging for Recurrence Reporting system for MRI assessment of local prostate cancer recurrence after radiation therapy or radical prostatectomy-a review[J]. AJR Am J Roentgenol, 2023, 220(6): 852-861. DOI: 10.2214/AJR.22.28665.
[33]
LOWRANCE W T, BREAU R H, CHOU R, et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline PART I[J]. J Urol, 2021, 205(1): 14-21. DOI: 10.1097/JU.0000000000001375.
[34]
PATEL P, MATHEW M S, TRILISKY I, et al. Multiparametric MR imaging of the prostate after treatment of prostate cancer[J]. Radiographics, 2018, 38(2): 437-449. DOI: 10.1148/rg.2018170147.
[35]
GAUR S, TURKBEY B. Prostate MR imaging for posttreatment evaluation and recurrence[J]. Radiol Clin North Am, 2018, 56(2): 263-275. DOI: 10.1016/j.rcl.2017.10.008.
[36]
ZHU X H, SHAO L Z, YAN Y, et al. MRI-based radiomics features associated with biochemical recurrence of prostate cancer after radical prostatectomy[J]. Chin J Minim Invasive Surg, 2023, 23(5): 359-366. DOI: 10.3969/j.issn.1009-6604.2023.05.008.
[37]
SATHIADOSS P, HAROON M, OSMAN H, et al. Comparison of 5 rectal preparation strategies for prostate MRI and impact on image quality[J]. J L'association Can Des Radiol, 2022, 73(2): 346-354. DOI: 10.1177/08465371211033753.
[38]
AWIWI M O, GJONI M, VIKRAM R, et al. MRI and PSMA PET/CT of biochemical recurrence of prostate cancer[J/OL]. Radiographics, 2023, 43(12): e230112 [2024-04-20]. https://pubmed.ncbi.nlm.nih.gov/37999983/. DOI: 10.1148/rg.230112.
[39]
DE VISSCHERE P J L, STANDAERT C, FÜTTERER J J, et al. A systematic review on the role of imaging in early recurrent prostate cancer[J]. Eur Urol Oncol, 2019, 2(1): 47-76. DOI: 10.1016/j.euo.2018.09.010.
[40]
VAN DEN BROECK T, VAN DEN BERGH R C N, ARFI N, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review[J]. Eur Urol, 2019, 75(6): 967-987. DOI: 10.1016/j.eururo.2018.10.011.

PREV Correlation of full-volume IVIM quantitative parameters with neurovascular invasion, MSI status, and Ki-67 index in rectal adenocarcinoma
NEXT The predictive value of DCE-MRI and DWI for Ki-67 expression and Gleason score in prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn