Share:
Share this content in WeChat
X
Clinical Article
The predictive value of DCE-MRI and DWI for Ki-67 expression and Gleason score in prostate cancer
ZHOU Dingyan  HE Wenqi  WANG Wei  CHEN Meining  LUO Min 

Cite this article as: ZHOU D Y, HE W Q, WANG W, et al. The predictive value of DCE-MRI and DWI for Ki-67 expression and Gleason score in prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(9): 94-100, 119. DOI:10.12015/issn.1674-8034.2024.09.016.


[Abstract] Objective To evaluate the diagnostic efficacy of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) combined with diffusion weighted imaging (DWI) in predicting Ki-67 expression and Gleason score in prostate cancer (PCa) Ki-67 expression and Gleason score.Materials and Methods A retrospective analysis of MRI data from 66 PCa patients treated at the Zigong Fourth People's Hospital from January 2019 to October 2023 was conducted. Combining T2WI, DWI sequences and the apparent diffusion coefficient (ADC) automatically calculated by DWI, the regions of interest (ROI) of the tumor was manually outlined on the DCE-MRI images, calculate ROI pharmacokinetic parameters, including volumetric transport constants (Ktrans), rate constant (Kep), extravascular extracellular volume fraction (Ve), and measure apparent diffusion coefficient values (ADC). According to the targeted puncture pathology diagnosis Gleason score and Ki-67 expression level were categorized into Ki-67 high expression group (Ki-67>10%) and low expression group (Ki-67≤10%), and Gleason score low grade (GG 1-2) and high grade (GG 3-5) groups. Differences between groups were compared using two independent samples t-test or non-parametric test, Spearman correlation analysis was used to evaluate the correlation of DCE-MRI parameters and ADC values with Ki-67 and Gleason scores, and logistic regression model was established to evaluate the diagnostic efficacy by receiver operating characteristic (ROC) curve to evaluate the diagnostic efficacy.Results ADC values in PCa were negatively correlated with Ki-67 expression and Gleason score (P<0.001), while Ktrans, Kep and Ve were positively correlated with Ki-67 expression (P<0.001). Ktrans and Kep were also positively correlated with Gleason score (P<0.001). Statistically significant differences were found in Ktrans, Kep, Ve and ADC values between high and low Ki-67 expression groups (P<0.01), as well as between high and low Gleason score groups (P<0.01). ROC curve analysis for Ki-67 expression showed that the combined model of Ktrans+Kep+Ve+ADC had the best diagnostic performance, with an area under the curve (AUC) of 0.940. ROC curve analysis for Gleason score grading showed that the combined model of Ktrans+Kep+ADC had the best diagnostic performance, with an AUC of 0.861.Conclusions The quantitative parameters of DCE-MRI combined with ADC values show high diagnostic efficacy in predicting Ki-67 expression and Gleason score in PCa. These findings suggest that the combined use of quantitative DCE-MRI parameters with ADC values improves the accuracy of predicting pathological grading and biological aggressiveness of PCa.
[Keywords] prostate cancer;Ki-67;Gleason score;magnetic resonance imaging;dynamic contrast-enhanced;diffusion weighted imaging

ZHOU Dingyan1   HE Wenqi2   WANG Wei2   CHEN Meining3   LUO Min2*  

1 Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China

2 Department of Radiology, Zigong Fourth People's Hospital, Zigong 643000, China

3 Department of MR Scientific Marketing, Siemens Healthineers, Shanghai 200124, China

Corresponding author: LUO M, E-mail: zghd1234@163.com

Conflicts of interest   None.

Received  2024-04-30
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.016
Cite this article as: ZHOU D Y, HE W Q, WANG W, et al. The predictive value of DCE-MRI and DWI for Ki-67 expression and Gleason score in prostate cancer[J]. Chin J Magn Reson Imaging, 2024, 15(9): 94-100, 119. DOI:10.12015/issn.1674-8034.2024.09.016.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
BERGENGREN O, PEKALA K R, MATSOUKAS K, et al. 2022 update on prostate cancer epidemiology and risk factors-a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021.
[3]
SCHAEFFER E M, SRINIVAS S, ADRA N, et al. NCCN guidelines® insights: prostate cancer, version 1.2023[J]. J Natl Compr Canc Netw, 2022, 20(12): 1288-1298. DOI: 10.6004/jnccn.2022.0063.
[4]
LOWRANCE W T, BREAU R H, CHOU R, et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline PART I[J]. J Urol, 2021, 205(1): 14-21. DOI: 10.1097/JU.0000000000001375.
[5]
VAN DEN BROECK T, VAN DEN BERGH R C N, ARFI N, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review[J]. Eur Urol, 2019, 75(6): 967-987. DOI: 10.1016/j.eururo.2018.10.011.
[6]
TOLLEFSON M K, KARNES R J, KWON E D, et al. Prostate cancer Ki-67 (MIB-1) expression, perineural invasion, and gleason score as biopsy-based predictors of prostate cancer mortality: the Mayo model[J]. Mayo Clin Proc, 2014, 89(3): 308-318. DOI: 10.1016/j.mayocp.2013.12.001.
[7]
HURWITZ L M, AGALLIU I, ALBANES D, et al. Recommended definitions of aggressive prostate cancer for etiologic epidemiologic research[J]. J Natl Cancer Inst, 2021, 113(6): 727-734. DOI: 10.1093/jnci/djaa154.
[8]
GODTMAN R A, KOLLBERG K S, PIHL C G, et al. The association between age, prostate cancer risk, and higher gleason score in a long-term screening program: results from the göteborg-1 prostate cancer screening trial[J]. Eur Urol, 2022, 82(3): 311-317. DOI: 10.1016/j.eururo.2022.01.018.
[9]
EPSTEIN J I, AMIN M B, FINE S W, et al. The 2019 genitourinary pathology society (GUPS) white paper on contemporary grading of prostate cancer[J]. Arch Pathol Lab Med, 2021, 145(4): 461-493. DOI: 10.5858/arpa.2020-0015-RA.
[10]
KAMMERER-JACQUET S F, AHMAD A, MØLLER H, et al. Ki-67 is an independent predictor of prostate cancer death in routine needle biopsy samples: proving utility for routine assessments[J]. Mod Pathol, 2019, 32(9): 1303-1309. DOI: 10.1038/s41379-019-0268-y.
[11]
WU R X, HU M J, ZHANG P. Predictive value of systematic immune-inflammation index combined with Ki-67 index on prognosis of prostate cancer patients after laparoscopic radical prostatectomy[J/OL]. BMC Urol, 2023, 23(1): 210 [2023-12-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729478/. DOI: 10.1186/s12894-023-01379-3.
[12]
DUDKA I, LUNDQUIST K, WIKSTRÖM P, et al. Metabolomic profiles of intact tissues reflect clinically relevant prostate cancer subtypes[J/OL]. J Transl Med, 2023, 21(1): 860 [2023-11-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683247/. DOI: 10.1186/s12967-023-04747-7.
[13]
ALHAMDANI Z, POPPENBEEK S, BOLTON D, et al. Do alpha blockers reduce the risk of urinary retention post-transperineal prostate biopsy? A systematic narrative review[J/OL]. World J Urol, 2024, 42(1): 332 [2024-07-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101363. DOI: 10.1007/s00345-024-05001-5.
[14]
MIAN B M, FEUSTEL P J, AZIZ A, et al. Complications following transrectal and transperineal prostate biopsy: results of the ProBE-PC randomized clinical trial[J]. J Urol, 2024, 211(2): 205-213. DOI: 10.1097/JU.0000000000003788.
[15]
MARINO F, MORETTO S, ROSSI F, et al. Robot-assisted radical prostatectomy performed with the novel Hugo™ RAS system: a systematic review and pooled analysis of surgical, oncological, and functional outcomes[J/OL]. J Clin Med, 2024, 13(9): 2551 [2024-04-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084580. DOI: 10.3390/jcm13092551.
[16]
ZHOU C, ZHANG Y F, GUO S, et al. Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study[J/OL]. Discov Oncol, 2023, 14(1): 133 [2023-12-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361451. DOI: 10.1007/s12672-023-00752-w.
[17]
MA T, YANG S L, JING H Y, et al. Apparent diffusion coefficients in prostate cancer: correlation with molecular markers Ki-67, HIF-1α and VEGF[J/OL]. NMR Biomed, 2018, 31(3) [2024-08-09]. https://pubmed.ncbi.nlm.nih.gov/29315957. DOI: 10.1002/nbm.3884.
[18]
ZHANG J W, ZHAO Y Y, HUANG T, et al. Correlation between parameters of diffusion weighted imaging, dynamic contrast-enhanced magnetic resonance imaging and the expression of ki-67 protein in prostate cancer[J]. Chin J of Med Imag. 2019, 27(3): 216-220. DOI: 10.3969/j.issn.1005-5185.2019.03.013.
[19]
HUANG W Q, CHEN S, MA X Y, et al. Diagnostic value of multiparametric MRI for Gleason grading of prostate cancer[J]. Oncol Prog, 2024, 22(9): 1008-1010, 1024. DOI: 10.11877/j.issn.1672-1535.2024.22.09.17.
[20]
HAN S Y, LI C M, LIU M, et al. Application of biparametric magnetic resonance imaging in the detection of prostate cancer: a contrastive study based on whole mount section after radical prostatectomy[J]. Chin J Magn Reson Imag, 2021, 12(5): 30-34. DOI: 10.12015/issn.1674-8034.2021.05.007.
[21]
REYNOLDS H M, TADIMALLA S, WANG Y F, et al. Semi-quantitative and quantitative dynamic contrast-enhanced (DCE) MRI parameters as prostate cancer imaging biomarkers for biologically targeted radiation therapy[J/OL]. Cancer Imaging, 2022, 22(1): 71 [2023-12-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762110. DOI: 10.1186/s40644-022-00508-9.
[22]
ZHANG Y S, LI Z P, GAO C, et al. Preoperative histogram parameters of dynamic contrast-enhanced MRI as a potential imaging biomarker for assessing the expression of Ki-67 in prostate cancer[J]. Cancer Med, 2021, 10(13): 4240-4249. DOI: 10.1002/cam4.3912.
[23]
TAVAKOLI A A, HIELSCHER T, BADURA P, et al. Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for detecting clinically significant prostate cancer[J]. Radiology, 2023, 306(1): 186-199. DOI: 10.1148/radiol.212692.
[24]
TSURUTA C, HIRATA K, KUDO K, et al. DWI-related texture analysis for prostate cancer: differences in correlation with histological aggressiveness and data repeatability between peripheral and transition zones[J/OL]. Eur Radiol Exp, 2022, 6(1): 1 [2024-03-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940994. DOI: 10.1186/s41747-021-00252-y.
[25]
BYUN S S, LEE M, HONG S K, et al. Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: a propensity score matched study[J/OL]. PLoS One, 2019, 14(11): e0224671 [2023-11-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837325. DOI: 10.1371/journal.pone.0224671.
[26]
FAN X H, XIE N, CHEN J W, et al. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer[J/OL]. Front Oncol, 2022, 12: 839621 [2023-09-07]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859464. DOI: 10.3389/fonc.2022.839621.
[27]
QIAO X F, GU X L, LIU Y F, et al. MRI radiomics-based machine learning models for Ki67 expression and gleason grade group prediction in prostate cancer[J/OL]. Cancers, 2023, 15(18): 4536 [2023-12-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526397. DOI: 10.3390/cancers15184536.
[28]
VAN LEENDERS G J L H, VAN DER KWAST T H, GRIGNON D J, et al. The 2019 international society of urological pathology (ISUP) consensus conference on grading of prostatic carcinoma[J/OL]. Am J Surg Pathol, 2020, 44(8): e87-e99 [2023-09-27] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382533. DOI: 10.1097/PAS.0000000000001497.
[29]
ZHANG J, JING H Y, HAN X, et al. Diffusion-weighted imaging of prostate cancer on 3T MR: relationship between apparent diffusion coefficient values and Ki-67 expression[J]. Acad Radiol, 2013, 20(12): 1535-1541. DOI: 10.1016/j.acra.2013.09.007.
[30]
BORRETZEN A, REISAETER L A R, RINGHEIM A, et al. Microvascular proliferation is associated with high tumour blood flow by mpMRI and disease progression in primary prostate cancer[J/OL]. Sci Rep, 2023, 13(1): 17949 [2023-10-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589248. DOI: 10.1038/s41598-023-45158-4.
[31]
ALESSANDRINO F, TAGHIPOUR M, HASSANZADEH E, et al. Predictive role of PI-RADSv2 and ADC parameters in differentiating Gleason pattern 3+4 and 4+3 prostate cancer[J]. Abdom Radiol, 2019, 44(1): 279-285. DOI: 10.1007/s00261-018-1718-6.
[32]
MAIER S E, WALLSTRÖM J, LANGKILDE F, et al. Prostate cancer diffusion-weighted magnetic resonance imaging: does the choice of diffusion-weighting level matter?[J]. J Magn Reson Imaging, 2022, 55(3): 842-853. DOI: 10.1002/jmri.27895.
[33]
KUCZERA S, LANGKILDE F, MAIER S E. Truly reproducible uniform estimation of the ADC with multi-b diffusion data- Application in prostate diffusion imaging[J]. Magn Reson Med, 2023, 89(4): 1586-1600. DOI: 10.1002/mrm.29533.
[34]
FERNANDES C D, MISCHI M, WIJKSTRA H, et al. Radiomic combination of spatial and temporal features extracted from DCE-MRI for prostate cancer detection[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3153-3156. DOI: 10.1109/EMBC46164.2021.9630015.
[35]
PARK H, KIM S H, KIM J Y. Dynamic contrast-enhanced magnetic resonance imaging for risk stratification in patients with prostate cancer[J]. Quant Imaging Med Surg, 2022, 12(1): 742-751. DOI: 10.21037/qims-21-455.
[36]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[37]
MEYER H J, WIENKE A, SUROV A. Can dynamic contrast enhanced MRI predict gleason score in prostate cancer? a systematic review and meta analysis[J]. Urol Oncol, 2021, 39(11): 784.e17-784.e25 [2024-08-09]. https://pubmed.ncbi.nlm.nih.gov/33934966. DOI: 10.1016/j.urolonc.2021.03.015.
[38]
ZHU G B, LUO J W, OUYANG Z M, et al. The assessment of prostate cancer aggressiveness using a combination of quantitative diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging[J]. Cancer Manag Res, 2021, 13: 5287-5295. DOI: 10.2147/CMAR.S319306.
[39]
CHOI M H, LEE Y J, HAN D, et al. Quantitative analysis of prostate MRI: correlation between contrast-enhanced magnetic resonance fingerprinting and dynamic contrast-enhanced MRI parameters[J]. Curr Oncol, 2023, 30(12): 10299-10310. DOI: 10.3390/curroncol30120750.
[40]
JAMBOR I, KÄHKÖNEN E, TAIMEN P, et al. Prebiopsy multiparametric 3T prostate MRI in patients with elevated PSA, normal digital rectal examination, and no previous biopsy[J]. J Magn Reson Imaging, 2015, 41(5): 1394-1404. DOI: 10.1002/jmri.24682.
[41]
VLAJNIC T, BRUNNER P, EPPENBERGER-CASTORI S, et al. High inter- and intratumoral variability of Ki67 labeling index in newly diagnosed prostate cancer with high gleason scores[J]. Pathobiology, 2022, 89(2): 74-80. DOI: 10.1159/000519007.

PREV Application of high b-value DWI generated based on diffusion model to assess local recurrence after radical treatment of prostate cancer
NEXT Study of ADC minimum in combination with clinical and imaging features for prediction of HIFU efficacy in treatment of uterine fibroids
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn