Share:
Share this content in WeChat
X
Technical Article
Comparison of the value of CS-SEMAC, HBW, and dixon techniques for postoperative magnetic resonance imaging of spinal metal implants
YIN Fan  ZHANG Yumei  LI Bingxuan  XU Lei  SUN Yi  ZOU Yuefen 

Cite this article as: YIN F, ZHANG Y M, LI B X, et al. Comparison of the value of CS-SEMAC, HBW, and dixon techniques for postoperative magnetic resonance imaging of spinal metal implants[J]. Chin J Magn Reson Imaging, 2024, 15(9): 120-126. DOI:10.12015/issn.1674-8034.2024.09.020.


[Abstract] Objective To investigate the value of compressed sensing combined with compressed sensing-slice-encoding metal artifact correction (CS-SEMAC) technique for postoperative MRI of spinal metal implants.Materials and Methods The 3.0 T sagittal MRI CS-SEMAC sequence, high bandwidth (HBW) sequence, and water-fat separation (Dixon) sequence were compared in terms of metal implant artifact area, vertebral signal-to-noise ratio (SNR), image quality, image clarity, fat suppression effect, and visibility of anatomical structures around the implant in 35 postoperative spinal metal implant patients with inclusion criteria.Results The metal artifact areas of CS-SEMAC on T1 and T2 were (15.45±6.84) and (22.23±9.76) cm², respectively, which were significantly lower than those of the other two sequences, and the differences were statistically significant (P<0.001); Two-by-two comparison of signal-to-noise ratios of the three sequences on the T2 lipid-suppressed sagittal images showed that: the vertebral snr of the HBW sequence was significantly higher than those of the two other sequences, Dixon sequence SNR was significantly lower than the other two sequences, and CS-SEMAC sequence SNR was lower than the HBW sequence and higher than the Dixon sequence, and the differences were all statistically significant (P<0.001); In terms of image clarity, the score of the T2WI-tirm-CS-SEMAC sequence was lower than that of the other two sequences, and the difference was statistically significant (P<0.01). The T2WI-tirm-CS-SEMAC sequence scored significantly better than the other two sequences regarding the image quality and fat suppression effect (P<0.001); The T2WI-tirm-CS-SEMAC sequence could clearly display the vertebral body, pedicle, intervertebral foramen and nerve roots around the implant (P<0.001); meanwhile. The T2WI-Dixon lipoinhibition sequence could also clearly display the nerve roots in the intervertebral foramen, and the difference was statistically significant (P<0.001).Conclusions Compared with HBW and Dixon sequences, CS-SEMAC sequence can effectively reduce the metal artifacts around the implant, and significantly improve the image quality and fat inhibition effect of T2 lipid suppression sequence. Although the SNR of the adjacent vertebral body of the metal implant on T2 lipid suppression is decreased compared with that of HBW sequence, the image is slightly blurred than that of HBW and Dixon images. However, the visibility of key anatomical structures around the vertebral body is significantly improved, which has certain advantages for the display of spinal anatomy after spinal surgery.
[Keywords] spine;magnetic resonance imaging;compressed sensing-slice-encoding metal artifact correction;high bandwidth;metal artifact

YIN Fan   ZHANG Yumei   LI Bingxuan   XU Lei   SUN Yi   ZOU Yuefen*  

Department of Radiology, the First Affiliated Hospital of Nanjing Medical University (People's Hospital of Jiangsu Province), Nanjing 210029, China

Corresponding author: ZOU Y F, E-mail: zouyuefendc@126.com

Conflicts of interest   None.

Received  2024-05-19
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.020
Cite this article as: YIN F, ZHANG Y M, LI B X, et al. Comparison of the value of CS-SEMAC, HBW, and dixon techniques for postoperative magnetic resonance imaging of spinal metal implants[J]. Chin J Magn Reson Imaging, 2024, 15(9): 120-126. DOI:10.12015/issn.1674-8034.2024.09.020.

[1]
O'LYNNGER T M, ZUCKERMAN S L, MORONE P J, et al. Trends for spine surgery for the elderly: implications for access to healthcare in North America[J/OL]. Neurosurgery, 2015, 77(Suppl 4): S136-S141 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/26378351/. DOI: 10.1227/NEU.0000000000000945.
[2]
LIU J B, SHI J. Application value of magnetic resonance water-fat separation imaging technique in postoperative imaging assessment of patients with spinal metal internal fixation[J]. China Med Pharm, 2022, 12(11): 159-162. DOI: 10.3969/j.issn.2095-0616.2022.11.041.
[3]
VAN RIJN J C, KLEMETSO N, REITSMA J B, et al. Observer variation in the evaluation of lumbar herniated discs and root compression: spiral CT compared with MRI[J]. Br J Radiol, 2006, 79(941): 372-377. DOI: 10.1259/bjr/26216335.
[4]
SNEAG D B, ABEL F, POTTER H G, et al. MRI advancements in musculoskeletal clinical and research practice[J/OL]. Radiology, 2023, 308(2): e230531 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/37581501/. DOI: 10.1148/radiol.230531.
[5]
HUANG C C, JAW F S, YOUNG Y H. Radiological and functional assessment in patients with lumbar spinal stenosis[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 137 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/35144568/. DOI: 10.1186/s12891-022-05053-x.
[6]
DO T D, SUTTER R, SKORNITZKE S, et al. CT and MRI techniques for imaging around orthopedic hardware[J]. Rofo, 2018, 190(1): 31-41. DOI: 10.1055/s-0043-118127.
[7]
TALON E, WIMMER W, HAKIM A, et al. Influence of head orientation and implantation site of a novel transcutaneous bone conduction implant on MRI metal artifact reduction sequence[J]. Eur Arch Otorhinolaryngol, 2022, 279(10): 4793-4799. DOI: 10.1007/s00405-022-07272-3.
[8]
KHODARAHMI I, BRINKMANN I M, LIN D J, et al. New-generation low-field magnetic resonance imaging of hip arthroplasty implants using slice encoding for metal artifact correction: first in vitro experience at 0.55 T and comparison with 1.5 T[J]. Invest Radiol, 2022, 57(8): 517-526. DOI: 10.1097/RLI.0000000000000866.
[9]
KHODARAHMI I, KHANUJA H S, STERN S E, et al. Compressed sensing SEMAC MRI of hip, knee, and ankle arthroplasty implants: a 1.5-T and 3-T intrapatient performance comparison for diagnosing periprosthetic abnormalities[J]. AJR Am J Roentgenol, 2023, 221(5): 661-672. DOI: 10.2214/AJR.23.29380.
[10]
YANG J Y, HSIEH T J, CHEN C K H, et al. Comparison of short-tau inversion recovery with short-tau inversion recovery-slice encoding for metal artifact correction for spine imaging at 1.5 T in the setting of metallic implants[J]. J Comput Assist Tomogr, 2023, 47(5): 811-819. DOI: 10.1097/RCT.0000000000001472.
[11]
LI J, SUN X W, YUAN H S. The development and application of metal artifact reduction techniques[J]. Chin J Radiol, 2021, 55(9): 889-894. DOI: 10.3760/cma.j.cn112149-20200914-01091.
[12]
DE CESAR NETTO C, FONSECA L F, FRITZ B, et al. Metal artifact reduction MRI of total ankle arthroplasty implants[J]. Eur Radiol, 2018, 28(5): 2216-2227. DOI: 10.1007/s00330-017-5153-9.
[13]
FRITZ J, FRITZ B, THAWAIT G K, et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC[J]. Skeletal Radiol, 2016, 45(10): 1345-1356. DOI: 10.1007/s00256-016-2437-0.
[14]
GOO E H, KIM S S. Evaluating compressed SENSE (CS) MRI metal artifact reduction using pig L-spine phantom and transplant patients: focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR techniques[J]. Tomography, 2022, 8(5): 2298-2312. DOI: 10.3390/tomography8050192.
[15]
SUSA M, OGURO S, KIKUTA K, et al. Novel MR imaging method: MAVRIC: for metal artifact suppression after joint replacement in musculoskeletal tumor patients[J/OL]. BMC Musculoskelet Disord, 2015, 16: 377 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/26637412/. DOI: 10.1186/s12891-015-0838-1.
[16]
YANG R J, ZHA Y F, FAN Y, et al. A feasibility research on reducing metal artifacts using MAVRIC-SL STIR sequence in patients receiving anterior cervical surgery[J]. Radiol Pract, 2019, 34(4): 463-467. DOI: 10.13609/j.cnki.1000-0313.2019.04.019.
[17]
LIU J, WANG C B, CHEN X Y. Comparison of the value of optimized STIR and IDEAL fat suppression techniques in MRI of patients with metal implants[J]. China Med Devices, 2021, 36(10): 59-62, 89. DOI: 10.3969/j.issn.1674-1633.2021.10.014.
[18]
FULLER S, REEDER S, SHIMAKAWA A, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experience[J]. AJR Am J Roentgenol, 2006, 187(6): 1442-1447. DOI: 10.2214/AJR.05.0930.
[19]
KIM J K, KIM Y J, LEE S, et al. Metallic artifact reduction of multiacquisition with variable resonance image combination selective-short tau inversion recovery for postoperative cervical spine with artificial disk replacement: a preliminary study[J]. J Comput Assist Tomogr, 2022, 46(2): 274-281. DOI: 10.1097/RCT.0000000000001266.
[20]
WEI J, LI P L, ZHAO Z J, et al. Application of Demetal Artifact Sequence in Postoperative Magnetic Resonance Imaging of Lumbar Metal Implants[J]. Chin J CT MRI, 2022, 20(12): 156-158. DOI: 10.3969/j.issn.1672-5131.2022.12.059.
[21]
LI Q, XU W J, BAI Y, et al. Clinical value comparison of metal artifact reduction techniques in patients with total knee arthroplasty[J]. J Med Imag, 2023, 33(3): 488-492.
[22]
FEUERRIEGEL G C, SUTTER R. Managing hardware-related metal artifacts in MRI: current and evolving techniques[J]. Skeletal Radiol, 2024, 53(9): 1737-1750. DOI: 10.1007/s00256-024-04624-4.
[23]
ZHANG X P, LIU L, CHENG J L. Application of different imaging techniques in MRI detection of patients with lumber spine metallic implants[J]. Biomed Eng Clin Med, 2019, 23(5): 534-538. DOI: 10.13339/j.cnki.sglc.20190903.006.
[24]
WU W, GE Z F, CHEN K. Effect of syngo WARP on reducing MRI artifacts caused by titanium alloys implants-a phantom study[J]. J Med Imag, 2018, 28(6): 1024-1027.
[25]
JUNGMANN P M, AGTEN C A, PFIRRMANN C W, et al. Advances in MRI around metal: MRI Around Metal[J]. J Magn Reson Imaging, 2017, 46(4): 972-991. DOI: 10.1002/jmri.25708.
[26]
KHODARAHMI I, ISAAC A, FISHMAN E K, et al. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging[J/OL]. Semin Musculoskelet Radiol, 2019, 23(3): e68-e81 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/31163511/. DOI: 10.1055/s-0039-1687898.
[27]
BACHSCHMIDT T J, SUTTER R, JAKOB P M, et al. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses[J]. J Magn Reson Imaging, 2015, 41(6): 1570-1580. DOI: 10.1002/jmri.24729.
[28]
MURAKAMI M, MORI H, KUNIMATSU A, et al. Postsurgical spinal magnetic resonance imaging with iterative decomposition of water and fat with echo asymmetry and least-squares estimation[J]. J Comput Assist Tomogr, 2011, 35(1): 16-20. DOI: 10.1097/RCT.0b013e3181f8d30d.
[29]
ZHAO Q, SUN X W, ZHANG L H, et al. The value of SEMAC-VAT imaging in the post-operative imaging of spine reconstruction surgery with 3D-printed vertebral body[J]. Chin J Magn Reson Imag, 2023, 14(1): 130-135. DOI: 10.12015/issn.1674-8034.2023.01.023.
[30]
TAKAHASHI T, TAKESHITA K. Artifact reduction proton density magnetic resonance imaging can better visualize unicompartmental knee arthroplasty components but does not improve measurement accuracy at 3T: an in vitro phantom study[J/OL]. Cureus, 2023, 15(10): e46338 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/37790872/. DOI: 10.7759/cureus.46338.
[31]
LU W M, PAULY K B, GOLD G E, et al. SEMAC: slice encoding for metal artifact correction in MRI[J]. Magn Reson Med, 2009, 62(1): 66-76. DOI: 10.1002/mrm.21967.
[32]
ZHAO B Y H, KHAN N A, WICHUK S, et al. The use of slice encoding for metal artifact correction (SEMAC) sequencing improves the diagnostic evaluation of graft integrity following anterior cruciate ligament reconstruction[J]. J ISAKOS, 2023, 8(5): 318-324. DOI: 10.1016/j.jisako.2023.04.006.
[33]
CROP F, GUILLAUD O, AMOR M BEN HAJ, et al. Comparison of compressed sensing and controlled aliasing in parallel imaging acceleration for 3D magnetic resonance imaging for radiotherapy preparation[J/OL]. Phys Imaging Radiat Oncol, 2022, 23: 44-47 [2024-05-18]. https://pubmed.ncbi.nlm.nih.gov/35789969/. DOI: 10.1016/j.phro.2022.06.008.
[34]
VORNETTI G, BARTIROMO F, TONI F, et al. Follow-up assessment of intracranial aneurysms treated with endovascular coiling: comparison of compressed sensing and parallel imaging time-of-flight magnetic resonance angiography[J]. Tomography, 2022, 8(3): 1608-1617. DOI: 10.3390/tomography8030133.
[35]
ZHANG H N, SONG Q W, ZHANG N, et al. Application of compressed sensing technology in rapid lumbar magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(2): 132-137, 144. DOI: 10.12015/issn.1674-8034.2023.02.022.
[36]
GALLEY J, SUTTER R, STERN C, et al. Diagnosis of periprosthetic hip joint infection using MRI with metal artifact reduction at 1.5 T[J]. Radiology, 2020, 296(1): 98-108. DOI: 10.1148/radiol.2020191901.

PREV MRI features and clinical correlation analysis of thigh muscle in children with spinal muscular atrophy
NEXT Kaposiform hemangioendothelioma of spleen with liver metastasis: One case report and literature review
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn