Share:
Share this content in WeChat
X
Review
Research progress on structural and functional changes of the amygdala in patients with insomnia using magnetic resonance imaging
JIA Shulei  SUN Yongbing  ZHOU Jing  WU Xiaoling  LI Zhonglin  LI Hao  ZOU Zhi  SHANG Feifei  LI Yongli 

Cite this article as: JIA S L, SUN Y B, WU X L, et al. Research progress on structural and functional changes of the amygdala in patients with insomnia using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 135-139. DOI:10.12015/issn.1674-8034.2024.09.023.


[Abstract] Insomnia disorder (ID) constitutes a social public health concern and represents the second most prevalent type of mental illness globally. Furthermore, other mental disorders and physical ailments interact causally and mutually reinforce each other. The amygdala serves as a crucial emotional hub, not only regulating behavioral cognition and emotions but also functioning as a significant sleep regulator. With the progress of neuroimaging and MRI technology, it becomes feasible to illuminate the neuropathological mechanism of ID by analyzing the variations in the structure, function, fiber tracts and blood flow of the amygdala among ID patients. In this paper, the alterations in the amygdala of ID patients were summarized via MRI multimodal technology, with the aim of offering novel perspectives for the study of the pathological mechanism of ID and a fresh direction for treatment.
[Keywords] insomnia disorder;magnetic resonance imaging;resting state functional magnetic resonance imaging;real time functional magnetic resonance imaging with neural feedback;diffusion tensor imaging;amygdala;brain function

JIA Shulei1   SUN Yongbing2   ZHOU Jing3   WU Xiaoling4   LI Zhonglin2   LI Hao5   ZOU Zhi2   SHANG Feifei3   LI Yongli3*  

1 Xinxiang Medical University/Department of Medical Imaging, Henan Provincial People's Hospital, Xinxiang 453003, China

2 Department of Medical Imaging, Zhengzhou University People's Hospital/Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Health Management, Henan Proincial People's Hospital, Zhengzhou 450003, China

4 Department of Nuclear Medicine, Henan Proincial People's Hospital/Zhengzhou University People's Hospital,Zhengzhou 450003, China

5 Department of Health Management, Fuwai Huazhong Cardiovascular Hospital, Zhengzhou 451450, China

Corresponding author: LI Y L, E-mail: shyliyongli@126.com

Conflicts of interest   None.

Received  2024-04-07
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.023
Cite this article as: JIA S L, SUN Y B, WU X L, et al. Research progress on structural and functional changes of the amygdala in patients with insomnia using magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 135-139. DOI:10.12015/issn.1674-8034.2024.09.023.

[1]
CHUNG K F, YEUNG W F, HO F Y Y, et al. Cross-cultural and comparative epidemiology of insomnia: the Diagnostic and Statistical Manual (DSM), International Classification of Diseases (ICD) and International Classification of Sleep Disorders (ICSD)[J]. Sleep Med, 2015, 16(4): 477-482. DOI: 10.1016/j.sleep.2014.10.018.
[2]
VAN SOMEREN E J W. Brain mechanisms of insomnia: new perspectives on causes and consequences[J]. Physiol Rev, 2021, 101(3): 995-1046. DOI: 10.1152/physrev.00046.2019.
[3]
SUTTON E L. Insomnia[J/OL]. Ann Intern Med, 2021, 174(3): ITC33-ITC48 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33683929/. DOI: 10.7326/AITC202103160.
[4]
PERLIS M L, POSNER D, RIEMANN D, et al. Insomnia[J]. Lancet, 2022, 400(10357): 1047-1060. DOI: 10.1016/S0140-6736(22)00879-0.
[5]
HUANG Z, LIANG P, JIA X, et al. Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI[J]. Eur J Radiol, 2012, 81(6): 1288-1295. DOI: 10.1016/j.ejrad.2011.03.029.
[6]
SOLLENBERGER N A, KIMBLER A, CUMMINGS L R, et al. Sleep fails to depotentiate amygdala-reactivity to negative emotional stimuli in youth with elevated symptoms of anxiety[J]. Cogn Affect Behav Neurosci, 2023, 23(2): 415-426. DOI: 10.3758/s13415-023-01066-8.
[7]
WU C, FERREIRA F, FOX M, et al. Clinical applications of magnetic resonance imaging based functional and structural connectivity[J/OL]. Neuroimage, 2021, 244: 118649 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/34648960/. DOI: 10.1016/j.neuroimage.2021.118649.
[8]
WANG J T, QIU H B, TIAN G Z, et al. Expression of microtubule-associated protein-2 and neurofilament-200 in rat brain after sleep deprivation[J]. Acta Anatomica Sinica2010, 41(03): 358-361. DOI: 10.3969/j.issn.0529-1356.2010.03.006.
[9]
KIM Y, JANG Y N, KIM J Y, et al. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons[J]. FASEB J, 2020, 34(5): 6965-6983. DOI: 10.1096/fj.201902122RR.
[10]
WATTANATHAMSAN O, PONGRAKHANANON V. Emerging role of microtubule-associated proteins on cancer metastasis[J/OL]. Front Pharmacol, 2022, 13: 935493 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/36188577/. DOI: 10.3389/fphar.2022.935493.
[11]
KOTAICH F, CAILLOL D, BOMONT P. Neurofilaments in health and Charcot-Marie-Tooth disease[J/OL]. Front Cell Dev Biol, 2023, 11: 1275155 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/38164457/. DOI: 10.3389/fcell.2023.1275155.
[12]
YUAN A, NIXON R A. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies[J/OL]. Front Neurosci, 2021, 15: 689938 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/34646114. DOI: 10.3389/fnins.2021.689938.
[13]
GERMAIN A, BUYSSE D J, NOFZINGER E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses[J]. Sleep Med Rev, 2008, 12(3): 185-195. DOI: 10.1016/j.smrv.2007.09.003.
[14]
CHEN J, TIAN C, ZHANG Q, et al. Changes in Volume of Subregions Within Basal Ganglia in Obsessive-Compulsive Disorder: A Study With Atlas-Based and VBM Methods[J/OL]. Front Neurosci, 2022, 16: 890616 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/35794954. DOI: 10.3389/fnins.2022.890616.
[15]
ABUAF A F, BUNTING S R, KLEIN S, et al. Analysis of the extent of limbic system changes in multiple sclerosis using FreeSurfer and voxel-based morphometry approaches[J/OL]. PLoS One, 2022, 17(9): e0274778 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/36137122. DOI: 10.1371/journal.pone.0274778.
[16]
DUNCAN J S, TRIMMEL K. Advanced neuroimaging techniques in epilepsy[J]. Curr Opin Neurol, 2022, 35(2): 189-195. DOI: 10.1097/WCO.0000000000001007.
[17]
MECHELLI A, PRICE C J, FRISTON K J. Voxel-Based Morphometry of the Human Brain: Methods and Applications[J]. Current Medical Imaging, 2005, 1(2): 105-113. DOI: 10.2174/1573405054038726.
[18]
LI J, FU X, et al. Surface-based morphological study on the relationship between cortical surface morphological changes and cancer-related fatigue changes in early chemotherapy for breast cancer[J]. Chin J Magn Reson Imaging, 2024, 2024, 15(2): 48-55. DOI: 10.12015/issn.1674-8034.2024.02.007.
[19]
KOO D L, J-H SHIN, J-S LIM, et al. Changes in subcortical shape and cognitive function in patients with chronic insomnia[J]. Sleep Medicine, 2017, 35: 23-26. DOI: 10.1016/j.sleep.2017.04.002.
[20]
GONG L, LIAO T, LIU D, et al. Amygdala Changes in Chronic Insomnia and Their Association with Sleep and Anxiety Symptoms: Insight from Shape Analysis[J]. Neural Plasticity, 2019, 2019: 1-8. DOI: 10.1155/2019/8549237.
[21]
BZDOK D, LAIRD A R, ZILLES K, et al. An investigation of the structural, connectional, and functional subspecialization in the human amygdala[J]. Hum Brain Mapp, 2013, 34(12): 3247-3266. DOI: 10.1002/hbm.22138.
[22]
HARIS E M, BRYANT R A, WILLIAMSON T, et al. Functional connectivity of amygdala subnuclei in PTSD: a narrative review[J]. Mol Psychiatry, 2023, 28(9): 3581-3594. DOI: 10.1038/s41380-023-02291-w.
[23]
RIEMANN D, VODERHOLZER U, SPIEGELHALDER K, et al. Chronic insomnia and MRI measured hippocampal[J]. Sleep, 2007, 30(8): 955-958. DOI: 10.1093/sleep/30.8.955.
[24]
LI M, YAN J, LI S, et al. Altered gray matter volume in primary insomnia patients: a DARTEL-VBM study[J]. Brain Imaging Behav, 2018, 12(6): 1759-1767. DOI: 10.1007/s11682-018-9844-x.
[25]
GOTO M, ABE O, HAGIWARA A, et al. Advantages of using both voxel-and surface-based morphometry in cortical morphology analysis: A review of various applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.2021-0096.
[26]
RODDY D, KELLY J R, FARRELL C, et al. Amygdala substructure volumes in Major Depressive Disorder[J/OL]. Neuroimage Clin, 2021, 31: 102781 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/34384996. DOI: 10.1016/j.nicl.2021.102781.
[27]
YUE J, HAN S W, LIU X, et al. Functional brain activity in patients with amnestic mild cognitive impairment: an rs-fMRI study[J/OL]. Front Neurol, 2023, 14: 1244696 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/37674874. DOI: 10.3389/fneur.2023.1244696.
[28]
LEITE L, ESPER N B, JUNIOR J, et al. An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood[J/OL]. Sci Rep, 2022, 12(1): 9558 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/35688847. DOI: 10.1038/s41598-022-13395-8.
[29]
LI W, WANG C, LAN X, et al. Resting-state functional connectivity of the amygdala in major depressive disorder with suicidal ideation[J]. J Psychiatr Res, 2022, 153: 189-196. DOI: 10.1016/j.jpsychires.2022.07.001.
[30]
LI W, XIE M, CHEN H, et al. Resting-state functional connectivity of amygdala subregions predicts treatment outcome for cognitive behavioral therapy in obsessive-compulsive disorder at a 4-month follow-up[J/OL]. Psychiatry Res, 2024, 335: 115876 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/38564923. DOI: 10.1016/j.psychres.2024.115876.
[31]
KWEON W, LEE K H, CHOI S H, et al. Amygdala resting-state functional connectivity alterations in patients with chronic insomnia disorder: correlation with electroencephalography beta power during sleep[J/OL]. Sleep, 2023, 46(10): zsad205 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/37531589/. DOI: 10.1093/sleep/zsad205.
[32]
RIEMANN D, SPIEGELHALDER K, FEIGE B, et al. The hyperarousal model of insomnia: a review of the concept and its evidence[J]. Sleep Med Rev, 2010, 14(1): 19-31. DOI: 10.1016/j.smrv.2009.04.002.
[33]
JIANG T, YIN X, ZHU L, et al. Abnormal alterations of regional spontaneous neuronal activity and functional connectivity in insomnia patients with difficulty falling asleep: a resting-state fMRI study[J/OL]. BMC Neurol, 2023, 23(1): 430 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/38049760/. DOI: 10.1186/s12883-023-03481-3.
[34]
YE Y, WANG C, LAN X, et al. Abnormal amygdala functional connectivity in MDD patients with insomnia complaints[J/OL]. Psychiatry Res Neuroimaging, 2023, 328: 111578 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/36525761/. DOI: 10.1016/j.pscychresns.2022.111578.
[35]
BOTTINGER B W, AGGENSTEINER P M, HOHMANN S, et al. Exploring real-time functional magnetic resonance imaging neurofeedback in adolescents with disruptive behavior disorder and callous unemotional traits[J]. J Affect Disord, 2024, 345: 32-42. DOI: 10.1016/j.jad.2023.10.036.
[36]
DUDEK E, DODELL-FEDER D. The efficacy of real-time functional magnetic resonance imaging neurofeedback for psychiatric illness: A meta-analysis of brain and behavioral outcomes[J]. Neurosci Biobehav Rev, 2021, 121: 291-306. DOI: 10.1016/j.neubiorev.2020.12.020.
[37]
ZGANG M, WU X L, LI Z L, et al. Regulation of amygdala by rtfMRI-NF technique in improving insomnia disorder[J]. Chin J Magn Reson Imaging, 2023, 14(07): 5-9. DOI: 10.12015/issn.1674-8034.2023.07.002.
[38]
QI F, ZHANG H, LI Z L, et al. Effects of real-time functional magnetic resonance imaging neurofeedback regulating amygdala activity on brain function in patients with insomnia and mood related neurotransmitters[J]. J Chin Pract Diagn Ther, 2022, 36(12): 1255-1259. DOI: 10.13507/j.issn.1674-3474.2022.12.014.
[39]
LI Z, LIU J, CHEN B, et al. Improved Regional Homogeneity in Chronic Insomnia Disorder After Amygdala-Based Real-Time fMRI Neurofeedback Training[J/OL]. Front Psychiatry, 2022, 13: 863056 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/35845454/. DOI: 10.3389/fpsyt.2022.863056.
[40]
LI X, LI Z, ZOU Z, et al. Real-Time fMRI Neurofeedback Training Changes Brain Degree Centrality and Improves Sleep in Chronic Insomnia Disorder: A Resting-State fMRI Study[J/OL]. Front Mol Neurosci, 2022, 15: 825286 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/35283729. DOI: 10.3389/fnmol.2022.825286.
[41]
YOUNG K D, MISAKI M, HARMER C J, et al. Real-Time Functional Magnetic Resonance Imaging Amygdala Neurofeedback Changes Positive Information Processing in Major Depressive Disorder[J]. Biol Psychiatry, 2017, 82(8): 578-586. DOI: 10.1016/j.biopsych.2017.03.013.
[42]
CHEN Y, WANG Y, SONG Z, et al. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review[J/OL]. Ageing Res Rev, 2023, 87: 101911 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/36931328. DOI: 10.1016/j.arr.2023.101911.
[43]
ZHANG Y, LIU Z, DOU W, et al. Study of the microstructure of brain white matter in medial temporal lobe epilepsy based on diffusion tensor imaging[J/OL]. Brain Behav, 2023, 13(4): e2919 [2024-04-07]. https://www.ncbi.nlm.nih.gov/pubmed/36880299. DOI: 10.1002/brb3.2919.
[44]
ZHANG X Q, SUN W, WEI H X, et al. Diffusion tensor imaging study of primary insomnia with or without anxiety and depression[J]. Journal of Psychiatry, 2022, 35(01): 35-38. DOI: 10.3969/j.issn.2095-9346.2022.01.007.
[45]
ZHANG W, RUTLIN J, EISENSTEIN S A, et al. Neuroinflammation in the Amygdala Is Associated With Recent Depressive Symptoms[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8(9): 967-975. DOI: 10.1016/j.bpsc.2023.04.011.
[46]
LI X L, SUN X J. The joint research progress of VBM, DTI, and resting BOLD-fMRI in severe depressive disorder[J]. Radiol Practice, 2013, 28(03): 276-278. DOI: 10.13609/j.cnki.1000-0313.2013.03.008.
[47]
TOGAO O, OBARA M, YAMASHITA K, et al. Arterial Spin Labeling-Based MR Angiography for Cerebrovascular Diseases: Principles and Clinical Applications[J/OL]. J Magn Reson Imaging, 2023 [2024-04-07]. DOI: 10.1002/jmri.29119.
[48]
HERNANDEZ-GARCIA L, ARAMENDIA-VIDAURRETA V, BOLAR D S, et al. Recent Technical Developments in ASL: A Review of the State of the Art[J]. Magn Reson Med, 2022, 88(5): 2021-2042. DOI: 10.1002/mrm.29381.
[49]
CHEN Y, FAN C, YANG W, et al. Cortical hypoperfusion in patients with idiopathic rapid eye movement sleep behavior disorder detected with arterial spin-labeled perfusion MRI[J]. Neurol Sci, 2020, 41(4): 809-815. DOI: 10.1007/s10072-019-04118-5.
[50]
ELVSASHAGEN T, MUTSAERTS H J, ZAK N, et al. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation[J]. Neuroimage, 2019, 186: 497-509. DOI: 10.1016/j.neuroimage.2018.11.032.

PREV Research progress on the hyperarousal of insomnia treated by acupuncture based on the default mode network
NEXT Research progress on brain structure and functional magnetic resonance imaging in patients with knee osteoarthritis pain
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn