Share:
Share this content in WeChat
X
Review
Research progress on brain structure and functional magnetic resonance imaging in patients with knee osteoarthritis pain
ZHOU Peng  CHEN Fei  DAI Zhenyu 

Cite this article as: ZHOU P, CHEN F, DAI Z Y. Research progress on brain structure and functional magnetic resonance imaging in patients with knee osteoarthritis pain[J]. Chin J Magn Reson Imaging, 2024, 15(9): 140-145. DOI:10.12015/issn.1674-8034.2024.09.024.


[Abstract] Knee osteoarthritis (KOA) is a very common and disabling joint disease. Pain is the main clinical symptom and the pathological mechanism is complex. With the application and development of neuroimaging technology in KOA pain research, the central nervous system is considered to play a crucial role in the occurrence and development of KOA pain. MRI is a cutting-edge technology to study the central nervous system. It is widely used in the study of brain central remodeling of pain, and can more intuitively show the changes of brain structure and function in patients with KOA pain. This article reviews the research on the KOA pain using structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). It mainly including changes in gray matter volume and cortical thickness in patients with KOA pain, abnormalities in white matter microstructure integrity, and rs-fMRI studies on brain low-frequency amplitude (ALFF), regional homogeneity (ReHo), functional connectivity (FC), and brain network changes in KOA pain patients. The aim of this study is to evaluate the association between neuroimaging markers and KOA pain, and to enrich the understanding of the changes of brain sMRI and rs-fMRI in patients with KOA pain.
[Keywords] knee osteoarthritis;magnetic resonance imaging;structural magnetic resonance imaging;resting-state functional magnetic resonance imaging;pain

ZHOU Peng   CHEN Fei   DAI Zhenyu*  

Department of Radiology, Sixth Affiliated Hospital of Nantong University (Yancheng Third People's Hospital), Yancheng 224008, China

Corresponding author: DAI Z Y, E-mail: ycsydzy@163.com

Conflicts of interest   None.

Received  2024-03-05
Accepted  2024-08-02
DOI: 10.12015/issn.1674-8034.2024.09.024
Cite this article as: ZHOU P, CHEN F, DAI Z Y. Research progress on brain structure and functional magnetic resonance imaging in patients with knee osteoarthritis pain[J]. Chin J Magn Reson Imaging, 2024, 15(9): 140-145. DOI:10.12015/issn.1674-8034.2024.09.024.

[1]
JIANG Y. Osteoarthritis year in review 2021: biology[J]. Osteoarthritis Cartilage, 2022, 30(2): 207-215. DOI: 10.1016/j.joca.2021.11.009.
[2]
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis Cartilage, 2022, 30(4): 516-534. DOI: 10.1016/j.joca.2021.12.003.
[3]
DAINESE P, MAHIEU H, DE MITS S, et al. Associations between markers of inflammation and altered pain perception mechanisms in people with knee osteoarthritis: a systematic review[J/OL]. RMD Open, 2023, 9(2): e002945 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/37225282/. DOI: 10.1136/rmdopen-2022-002945.
[4]
FONSECA-RODRIGUES D, RODRIGUES A, MARTINS T, et al. Correlation between pain severity and levels of anxiety and depression in osteoarthritis patients: a systematic review and meta-analysis[J]. Rheumatology (Oxford), 2021, 61(1): 53-75. DOI: 10.1093/rheumatology/keab512.
[5]
ALLEN K D, THOMA L M, GOLIGHTLY Y M. Epidemiology of osteoarthritis[J]. Osteoarthritis Cartilage, 2022, 30(2): 184-195. DOI: 10.1016/j.joca.2021.04.020.
[6]
KURIEN T, KERSLAKE R W, GRAVEN-NIELSEN T, et al. Chronic postoperative pain after total knee arthroplasty: The potential contributions of synovitis, pain sensitization and pain catastrophizing-An explorative study[J]. Eur J Pain, 2022, 26(9): 1979-1989. DOI: 10.1002/ejp.2018.
[7]
CHEN H, WU J, WANG Z, et al. Trends and Patterns of Knee Osteoarthritis in China: A Longitudinal Study of 17.7 Million Adults from 2008 to 2017[J/OL]. Int J Environ Res Public Health, 2021, 18(16): 8864 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34444613. DOI: 10.3390/ijerph18168864.
[8]
UNGSUDECHACHAI T, HONSAWEK S, JITTIKOON J, et al. Clusterin exacerbates interleukin-1β-induced inflammation via suppressing PI3K/Akt pathway in human fibroblast-like synoviocytes of knee osteoarthritis[J/OL]. Sci Rep, 2022, 12(1): 9963 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/35705674. DOI: 10.1038/s41598-022-14295-7.
[9]
BIE LARSEN J, ARENDT-NIELSEN L, SIMONSEN O, et al. Pain, sensitization and physical performances in patients with chronic painful knee osteoarthritis or chronic pain following total knee arthroplasty: An explorative study[J]. Eur J Pain, 2021, 25(1): 213-224. DOI: 10.1002/ejp.1663.
[10]
ZHENG J, YUAN P W, KANG W L, et al. Research progress on neural mechanism of chronic pain in osteoarthritis[J]. Chin J Pain Med, 2020, 26(6): 447-450. DOI: 10.3969/j.issn.1006-9852.2020.06.010.
[11]
COTTAM W J, IWABUCHI S J, DRABEK M M, et al. Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis[J]. Pain, 2018, 159(5): 929-938. DOI: 10.1097/j.pain.0000000000001209.
[12]
LEWIS G N, PARKER R S, SHARMA S, et al. Structural brain alterations before and after total knee arthroplasty: A longitudinal assessment[J]. Pain Med, 2018, 19(11): 2166-2176. DOI: 10.1093/pm/pny108.
[13]
BARROSO J, VIGOTSKY A D, BRANCO P, et al. Brain gray matter abnormalities in osteoarthritis pain: a cross-sectional evaluation[J]. Pain, 2020, 161(9): 2167-2178. DOI: 10.1097/j.pain.0000000000001904.
[14]
KANG B X, MA J, SHEN J, et al. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging[J/OL]. Brain Behav, 2022, 12(1): e2479 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34967156/. DOI: 10.1002/brb3.2479.
[15]
GUO H, WANG Y, QIU L, et al. Structural and functional abnormalities in knee osteoarthritis pain revealed with multimodal magnetic resonance imaging[J/OL]. Front Hum Neurosci, 2021, 15: 783355 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/34912202. DOI: 10.3389/fnhum.2021.783355.
[16]
LABRAKAKIS C. The role of the insular cortex in pain[J/OL]. Int J Mol Sci, 2023, 24(6): 5736 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/36982807/. DOI: 10.3390/ijms24065736.
[17]
ALSHUFT H M, CONDON L A, DINEEN R A, et al. Cerebral cortical thickness in chronic pain due to knee osteoarthritis: The effect of pain duration and pain sensitization[J/OL]. PLoS One, 2016, 11(9): e0161687 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/27658292/. DOI: 10.1371/journal.pone.0161687
[18]
LIU J, LIU W, HUANG J, et al. The modulation effects of the mind-body and physical exercises on the basolateral amygdala-temporal pole pathway on individuals with knee osteoarthritis[J/OL]. Int J Clin Health Psychol, 2024, 24(1): 100421 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/38077287/. DOI: 10.1016/j.ijchp.2023.100421.
[19]
NEUMANN N, DOMIN M, SCHMIDT C O, et al. Chronic pain is associated with less grey matter volume in the anterior cingulum, anterior and posterior insula and hippocampus across three different chronic pain conditions[J]. Eur J Pain, 2023, 27(10): 1239-1248. DOI: 10.1002/ejp.2153.
[20]
RECKZIEGEL D, ABDULLAH T, WU B, et al. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women[J]. Pain, 2021, 162(5): 1457-1467. DOI: 10.1097/j.pain.0000000000002143.
[21]
MAO C P, WILSON G, CAO J, et al. Abnormal anatomical and functional connectivity of the thalamo-sensorimotor circuit in chronic low back pain: Resting-state functional magnetic resonance imaging and diffusion tensor imaging study[J]. Neuroscience, 2022, 487: 143-154. DOI: 10.1016/j.neuroscience.2022.02.001.
[22]
MEI Y, WANG W, QIU D, et al. Micro-structural white matter abnormalities in new daily persistent headache: a DTI study using TBSS analysis[J/OL]. J Headache Pain, 2023, 24(1): 80 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/37394419. DOI: 10.1186/s10194-023-01620-2.
[23]
CHENG S, DONG X, ZHOU J, et al. Alterations of the white matter in patients with knee osteoarthritis: A diffusion tensor imaging study with tract-based spatial statistics[J/OL]. Front Neurol, 2022, 13: 835050 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/35370891. DOI: 10.3389/fneur.2022.835050.
[24]
HORTON J E, CRAWFORD H J, HARRINGTON G, et al. Increased anterior corpus callosum size associated positively with hypnotizability and the ability to control pain[J]. Brain, 2004, 127(Pt 8): 1741-1747. DOI: 10.1093/brain/awh196.
[25]
KIM D J, LIM M, KIM J S, et al. Altered white matter integrity in the corpus callosum in fibromyalgia patients identified by tract-based spatial statistical analysis[J]. Arthritis Rheumatol, 2014, 66(11): 3190-3199. DOI: 10.1002/art.38771.
[26]
RAHIMI R, DOLATSHAHI M, ABBASI-FEIJANI F, et al. Microstructural white matter alterations associated with migraine headaches: a systematic review of diffusion tensor imaging studies[J]. Brain Imaging Behav, 2022, 16(5): 2375-2401. DOI: 10.1007/s11682-022-00690-1.
[27]
CAI G Y, CHEN R L, XU S R, et al. Characteristics of amplitude of low frequency fluctuation in patients with knee osteoarthritis and low back pain[J]. Chin J Rehabil Theory Pract, 2022, 28(5): 602-608. DOI: 10.3969/j.issn.1006-9771.2022.05.016.
[28]
SHI A J, LI C L, WU Y, et al. Regional homogeneity of resting-state brain activity in knee osteoarthritis patients with chronic pain[J]. J Reg Anat Oper Surg, 2017, 26(6): 419-422. DOI: 10.11659/jjssx.12E016064.
[29]
ZHOU J, LI Z J, CHENG S R, et al. Research of neuroimaging characteristics of positive responses to acupuncture treatment in knee osteoarthritis knee pain patients[J]. China J Tradit Chin Med Pharm, 2022, 37(12): 7313-7320.
[30]
TIAN M Y, CHEN Y J, DING X F, et al. Probe of the central mechanism of analgesic effect of ozone water on patients with knee osteoarthritis pain based on rs-fMRI technique[J]. Chin J Magn Reson Imaging, 2021, 12(1): 53-58. DOI: 10.12015/issn.1674-8034.2021.01.011.
[31]
XIAO Y, LIU J, HU K, et al. fMRI study on the functional connectivity of nucleus accumbens in patients with knee osteoarthritis[J]. Rehabil Med, 2020, 30(1): 40-45. DOI: 10.3724/SP.J.1329.2020.01009.
[32]
LI X, YAO J, LIN X, et al. Transcranial random noise stimulation over the left dorsolateral prefrontal cortex attenuates pain expectation and perception[J]. Neurophysiol, 2023, 147: 1-10. DOI: 10.1016/j.clinph.2022.12.009.
[33]
LIU J, CHEN L, TU Y, et al. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex: A multiple mode MRI study[J]. Brain Behav Immun, 2019, 82: 253-263. DOI: 10.1016/j.bbi.2019.08.193.
[34]
ZHOU J, ZENG F, CHENG S, et al. Modulation effects of different treatments on periaqueductal gray resting state functional connectivity in knee osteoarthritis knee pain patients[J]. CNS Neurosci Ther, 2023, 29(7): 1965-1980. DOI: 10.1111/cns.14153.
[35]
LIU J, CHEN L, CHEN X, et al. Modulatory effects of different exercise modalities on the functional connectivity of the periaqueductal grey and ventral tegmental area in patients with knee osteoarthritis: a randomised multimodal magnetic resonance imaging study[J]. Br J Anaesth, 2019, 123(4): 506-518. DOI: 10.1016/j.bja.2019.06.017.
[36]
MAKOVAC E, VENEZIA A, HOHENSCHURZ-SCHMIDT D, et al. The association between pain-induced autonomic reactivity and descending pain control is mediated by the periaqueductal grey[J]. J Physiol, 2021, 599(23): 5243-5260. DOI: 10.1113/JP282013.
[37]
BECKER S, GANDHI W, POMARES F, et al. Orbitofrontal cortex mediates pain inhibition by monetary reward[J]. Soc Cogn Affect Neurosci, 2017, 12(4): 651-661. DOI: 10.1093/scan/nsw173.
[38]
WANG X, WANG K, BAO Z Y, et al. The correlation between altered brain fMRI and pain perception before and after operation in patients with knee osteoarthritis[J]. Int J Med Radiol, 2018, 42(3): 255-259, 284. DOI: 10.19300/j.2019.L6400.
[39]
IWABUCHI S J, DRABEK M M, COTTAM W J, et al. Medio-dorsal thalamic dysconnectivity in chronic knee pain: A possible mechanism for negative affect and pain comorbidity[J]. Eur J Neurosci, 2023, 57(2): 373-387. DOI: 10.1111/ejn.15880.
[40]
JONES S A, MORALES A M, HOLLEY A L, et al. Default mode network connectivity is related to pain frequency and intensity in adolescents[J/OL]. Neuroimage Clin, 2020, 27: 102326 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/32634754/. DOI: 10.1016/j.nicl.2020.102326.
[41]
LAN F, LIN G, CAO G, et al. Altered intrinsic brain activity and functional connectivity before and after knee arthroplasty in the elderly: A resting-state fMRI study[J/OL]. Front Neurol, 2020, 11: 556028 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/33133006/. DOI: 10.3389/fneur.2020.556028.
[42]
GOULDEN N, KHUSNULINA A, DAVIS N J, et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM[J]. Neuroimage, 2014, 99: 180-190. DOI: 10.1016/j.neuroimage.2014.05.052.
[43]
USHIO K, NAKANISHI K, MIKAMI Y, et al. Altered resting-state connectivity with pain-related expectation regions in female patients with severe knee osteoarthritis[J]. J Pain Res, 2020, 13: 3227-3234. DOI: 10.2147/JPR.S268529.
[44]
HU S, HAO Z, LI M, et al. Resting-state abnormalities in functional connectivity of the default mode network in migraine: A meta-analysis[J/OL]. Front Neurosci, 2023, 17: 1136790 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/36937687/. DOI: 10.3389/fnins.2023.1136790.
[45]
LIN G, LAN F, WU D, et al. Resting-state functional connectivity alteration in elderly patients with knee osteoarthritis and declined cognition: An observational study[J/OL]. Front Aging Neurosci, 2022, 14: 1002642 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/36337709. DOI: 10.3389/fnagi.2022.1002642.
[46]
BARROSO J, WAKAIZUMI K, REIS A M, et al. Reorganization of functional brain network architecture in chronic osteoarthritis pain[J]. Hum Brain Mapp, 2021, 42(4): 1206-1222. DOI: 10.1002/hbm.25287.

PREV Research progress on structural and functional changes of the amygdala in patients with insomnia using magnetic resonance imaging
NEXT Research progresses of MRI double inversion recovery sequence in central nervous system diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn