Share:
Share this content in WeChat
X
Review
Research progresses of MRI double inversion recovery sequence in central nervous system diseases
XIAO Qian  CHU Shuguang  LIN Lin  LIANG Songtao 

Cite this article as: XIAO Q, CHU S G, LIN L, et al. Research progresses of MRI double inversion recovery sequence in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2024, 15(9): 146-150, 166. DOI:10.12015/issn.1674-8034.2024.09.025.


[Abstract] Double inversion recovery (DIR) is an imaging sequence that suppresses two different tissue signals by applying two inversion pulses. Although the imaging time of DIR sequence is relatively longer than that of other conventional sequences, DIR imaging shows better white-gray contrast, lesion sensitivity and specificity in the detection of central nervous system diseases, especially the detection of cortical and juxtacortical lesions. In recent years, DIR technology has made continuous progress, which has improved the spatial resolution, acquisition speed, signal-to- noise ratio and reduced image artifacts. DIR imaging has wide promising applications in a variety of central nervous system diseases. This article reviews the imaging principle, technological development of DIR sequence and its value in central nervous system diseases, aiming to provide a new way for the diagnosis and prognosis of central nervous system diseases in the future.
[Keywords] magnetic resonance imaging;double inversion recovery;central nervous system diseases;cortical lesions;optic lesions

XIAO Qian1   CHU Shuguang2*   LIN Lin2   LIANG Songtao2  

1 Shanghai East Hospital, Dalian Medical University, Shanghai 200120, China

2 Department of Medical Imaging, Shanghai East Hospital, Shanghai 200120, China

Corresponding author: CHU S G, E-mail: chushu1018@hotmail.com

Conflicts of interest   None.

Received  2024-05-16
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.025
Cite this article as: XIAO Q, CHU S G, LIN L, et al. Research progresses of MRI double inversion recovery sequence in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2024, 15(9): 146-150, 166. DOI:10.12015/issn.1674-8034.2024.09.025.

[1]
BOUMAN P M, STEENWIJK M D, POUWELS P J W, et al. Histopathology-validated recommendations for cortical lesion imaging in multiple sclerosis[J]. Brain, 2020, 143(10): 2988-2997. DOI: 10.1093/brain/awaa233.
[2]
MATSUDA K, SHINOHARA M, II Y, et al. Magnetic resonance imaging and neuropsychological findings for predicting of cognitive deterioration in memory clinic patients[J/OL]. Front Aging Neurosci, 2023, 15: 1155122 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/37600513/. DOI: 10.3389/fnagi.2023.1155122.
[3]
VERKUIL F, HEMKE R, VAN GULIK E C, et al. Double inversion recovery MRI versus contrast-enhanced MRI for evaluation of knee synovitis in juvenile idiopathic arthritis[J/OL]. Insights Imaging, 2022, 13(1): 167 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36264355/. DOI: 10.1186/s13244-022-01299-0.
[4]
MA W W, CAI J G, ZHANG W, et al. Diagnostic performance of double inversion recovery MRI sequence for synovitis of the wrist joints in rheumatoid arthritis[J]. Radiol Med, 2023, 128(8): 978-988. DOI: 10.1007/s11547-023-01669-8.
[5]
HAMMOOD E R, SHIRANI S, SADRI A, et al. The role of improved motion-sensitized driven equilibrium blood suppression and fat saturation on T2 relaxation time, using GraSE sequence in cardiac magnetic resonance imaging[J]. J Magn Reson Imaging, 2024, 60(2): 662-672. DOI: 10.1002/jmri.29079.
[6]
GUAN X M, ZHANG X H, YANG H J, et al. On the loss of image contrast in double-inversion-recovery prepared T2* MRI of Intramyocardial hemorrhage[J/OL]. Magn Reson Imaging, 2024, 105: 125-132 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/37993042/. DOI: 10.1016/j.mri.2023.11.010.
[7]
MIDDLEBROOKS E H, PATEL V, ZHOU X Z, et al. 7 T lesion-attenuated magnetization-prepared gradient echo acquisition for detection of posterior Fossa demyelinating lesions in multiple sclerosis[J]. Invest Radiol, 2024, 59(7): 513-518. DOI: 10.1097/RLI.0000000000001050.
[8]
KRIJNEN E A, KOUWENHOVEN R M, NOTEBOOM S, et al. Subtypes and location of (juxta)cortical lesions relate to cognitive dysfunction in people with multiple sclerosis[J/OL]. Mult Scler, 2024: 13524585241260968 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/38872276/. DOI: 10.1177/13524585241260968.
[9]
BORRELLI S, MARTIRE M S, STÖLTING A, et al. Central vein sign, cortical lesions, and paramagnetic rim lesions for the diagnostic and prognostic workup of multiple sclerosis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(4): e200253 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/38788180/. DOI: 10.1212/NXI.0000000000200253.
[10]
KIM H G, TIAN Y N, JUNG S M, et al. Predicting the apolipoprotein E ε4 allele carrier status based on gray matter volumes and cognitive function[J/OL]. Brain Behav, 2024, 14(1): e3381 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/38376028/. DOI: 10.1002/brb3.3381.
[11]
ÖZÜTEMIZ C, WHITE M, ELVENDAHL W, et al. Use of a commercial 7-T MRI scanner for clinical brain imaging: indications, protocols, challenges, and solutions-a single-center experience[J]. AJR Am J Roentgenol, 2023, 221(6): 788-804. DOI: 10.2214/AJR.23.29342.
[12]
HAYASHI N, YARITA K, SAKATA K, et al. Optimization method of MRI scan parameters of a double inversion recovery sequence using a T1 map and a developed analysis algorithm[J]. J Xray Sci Technol, 2017, 25(5): 803-812. DOI: 10.3233/XST-16243.
[13]
COSTAGLI M, LAPUCCI C, ZACÀ D, et al. Improved detection of multiple sclerosis lesions with T2-prepared double inversion recovery at 3T[J]. J Neuroimaging, 2022, 32(5): 902-909. DOI: 10.1111/jon.13021.
[14]
LESPAGNOL M, MASSIRE A, MEGDICHE I, et al. Improved detection of juxtacortical lesions using highly accelerated double inversion-recovery MRI in patients with multiple sclerosis[J]. Diagn Interv Imaging, 2023, 104(9): 401-409. DOI: 10.1016/j.diii.2023.04.009.
[15]
EICHINGER P, HOCK A, SCHÖN S, et al. Acceleration of double inversion recovery sequences in multiple sclerosis with compressed sensing[J]. Invest Radiol, 2019, 54(6): 319-324. DOI: 10.1097/RLI.0000000000000550.
[16]
BOUMAN P M, STEENWIJK M D, GEURTS J J G, et al. Artificial double inversion recovery images can substitute conventionally acquired images: an MRI-histology study[J/OL]. Sci Rep, 2022, 12(1): 2620 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35173226/. DOI: 10.1038/s41598-022-06546-4.
[17]
MARCUS R. What is multiple sclerosis?[J/OL]. JAMA, 2022, 328(20): 2078 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36413229/. DOI: 10.1001/jama.2022.14236.
[18]
FILIPPI M, PREZIOSA P, MEANI A, et al. Performance of the 2017 and 2010 revised McDonald criteria in predicting MS diagnosis after a clinically isolated syndrome: a MAGNIMS study[J/OL]. Neurology, 2022, 98(1): e1-e14 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/34716250/. DOI: 10.1212/WNL.0000000000013016.
[19]
WATTJES M P, CICCARELLI O, REICH D S, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis[J]. Lancet Neurol, 2021, 20(8): 653-670. DOI: 10.1016/S1474-4422(21)00095-8.
[20]
BECK E S, MARANZANO J, LUCIANO N J, et al. Cortical lesion hotspots and association of subpial lesions with disability in multiple sclerosis[J]. Mult Scler, 2022, 28(9): 1351-1363. DOI: 10.1177/13524585211069167.
[21]
PREZIOSA P, PAGANI E, MEANI A, et al. NODDI, diffusion tensor microstructural abnormalities and atrophy of brain white matter and gray matter contribute to cognitive impairment in multiple sclerosis[J]. J Neurol, 2023, 270(2): 810-823. DOI: 10.1007/s00415-022-11415-1.
[22]
ZICCARDI S, PISANI A I, SCHIAVI G M, et al. Cortical lesions at diagnosis predict long-term cognitive impairment in multiple sclerosis: a 20-year study[J]. Eur J Neurol, 2023, 30(5): 1378-1388. DOI: 10.1111/ene.15697.
[23]
PARK C C, THONGKHAM D W, SADIGH G, et al. Detection of cortical and deep gray matter lesions in multiple sclerosis using DIR and FLAIR at 3T[J]. J Neuroimaging, 2021, 31(2): 408-414. DOI: 10.1111/jon.12822.
[24]
PARK C C, BRUMMER M E, SADIGH G, et al. Automated registration and color labeling of serial 3D double inversion recovery MR imaging for detection of lesion progression in multiple sclerosis[J]. J Digit Imaging, 2023, 36(2): 450-457. DOI: 10.1007/s10278-022-00737-1.
[25]
LEGUY S, COMBÈS B, BANNIER E, et al. Prognostic value of spinal cord MRI in multiple sclerosis patients[J]. Rev Neurol, 2021, 177(5): 571-581. DOI: 10.1016/j.neurol.2020.08.002.
[26]
PATEL S, DIMAANDAL I, KUHNS T, et al. Double inversion recovery to detect cervical spinal cord multiple sclerosis lesions[J]. J Neuroimaging, 2023, 33(4): 521-526. DOI: 10.1111/jon.13100.
[27]
RIEDERER I, KARAMPINOS D C, SETTLES M, et al. Double inversion recovery sequence of the cervical spinal cord in multiple sclerosis and related inflammatory diseases[J]. AJNR Am J Neuroradiol, 2015, 36(1): 219-225. DOI: 10.3174/ajnr.A4093.
[28]
BOUMAN P M, STRIJBIS V I, JONKMAN L E, et al. Artificial double inversion recovery images for (juxta)cortical lesion visualization in multiple sclerosis[J]. Mult Scler, 2022, 28(4): 541-549. DOI: 10.1177/13524585211029860.
[29]
BOUMAN P M, NOTEBOOM S, NOBREGA SANTOS F A, et al. Multicenter evaluation of AI-generated DIR and PSIR for cortical and juxtacortical multiple sclerosis lesion detection[J/OL]. Radiology, 2023, 307(2): e221425 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36749211/. DOI: 10.1148/radiol.221425.
[30]
ZORIGT O, NAKAJIMA T, KUMASAKA Y, et al. Synthetic double inversion recovery imaging in brain MRI: quantitative evaluation and feasibility of synthetic MRI and a comparison with conventional double inversion recovery and fluid-attenuated inversion recovery sequences[J/OL]. BMC Med Imaging, 2022, 22(1): 183 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36303114/. DOI: 10.1186/s12880-022-00877-4.
[31]
FINCK T, LI H W, SCHLAEGER S, et al. Uncertainty-aware and lesion-specific image synthesis in multiple sclerosis magnetic resonance imaging: a multicentric validation study[J/OL]. Front Neurosci, 2022, 16: 889808 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35557607/. DOI: 10.3389/fnins.2022.889808.
[32]
SCHLAEGER S, LI H B, BAUM T, et al. Longitudinal assessment of multiple sclerosis lesion load with synthetic magnetic resonance imaging-a multicenter validation study[J]. Invest Radiol, 2023, 58(5): 320-326. DOI: 10.1097/RLI.0000000000000938.
[33]
SONE D, SATO N, KIMURA Y, et al. Quantitative analysis of double inversion recovery and FLAIR signals in temporal lobe epilepsy[J/OL]. Epilepsy Res, 2021, 170: 106540 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/33385946/. DOI: 10.1016/j.eplepsyres.2020.106540.
[34]
BEHESHTI I, SONE D, MAIKUSA N, et al. Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning[J/OL]. Comput Biol Med, 2021, 137: 104805 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/34464851/. DOI: 10.1016/j.compbiomed.2021.104805.
[35]
NAJM I, LAL D, ALONSO VANEGAS M, et al. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission[J]. Epilepsia, 2022, 63(8): 1899-1919. DOI: 10.1111/epi.17301.
[36]
OPHEIM G, VAN DER KOLK A, MARKENROTH BLOCH K, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice[J]. Neurology, 2021, 96(7): 327-341. DOI: 10.1212/WNL.0000000000011413.
[37]
TANG Y Y, BLÜMCKE I, SU T Y, et al. Black line sign in focal cortical dysplasia IIB: a 7T MRI and electroclinicopathologic study[J/OL]. Neurology, 2022, 99(6): e616-e626 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35940890/. DOI: 10.1212/WNL.0000000000200702.
[38]
WONG-KISIEL L C, BRITTON J W, WITTE R J, et al. Double inversion recovery magnetic resonance imaging in identifying focal cortical dysplasia[J/OL]. Pediatr Neurol, 2016, 61: 87-93 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/27241231/. DOI: 10.1016/j.pediatrneurol.2016.04.013.
[39]
NÖTH U, GRACIEN R M, MAIWORM M, et al. Detection of cortical malformations using enhanced synthetic contrast images derived from quantitative T1 maps[J/OL]. NMR Biomed, 2020, 33(2): e4203 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/31797463/. DOI: 10.1002/nbm.4203.
[40]
SEVERINO M, GERALDO A F, UTZ N, et al. Definitions and classification of malformations of cortical development: practical guidelines[J]. Brain, 2020, 143(10): 2874-2894. DOI: 10.1093/brain/awaa174.
[41]
CHIBA E, SATO N, KIMURA Y, et al. Double inversion recovery MRI of subcortical band heterotopia and its variations[J]. J Neuroimaging, 2023, 33(5): 731-736. DOI: 10.1111/jon.13141.
[42]
DENIS M, WOILLEZ J P, SMIRNOV V M, et al. Optic nerve lesion length at the acute phase of optic neuritis is predictive of retinal neuronal loss[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2): e1135 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/35091465/. DOI: 10.1212/NXI.0000000000001135.
[43]
MURUMKAR V, PRIYADARSHINI BAISHYA P, KULANTHAIVELU K, et al. Comparison of 3D Double Inversion Recovery (DIR) versus 3D Fluid Attenuated Inversion Recovery (FLAIR) in precise diagnosis of acute optic neuritis[J/OL]. Eur J Radiol, 2022, 155: 110505 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/36113286/. DOI: 10.1016/j.ejrad.2022.110505.
[44]
DAVION J B, LOPES R, DRUMEZ É, et al. Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS[J/OL]. Neurology, 2020, 94(23): e2468-e2478 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/32434868/. DOI: 10.1212/WNL.0000000000009504.
[45]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[46]
ISHIKAWA H, II Y, SHINDO A, et al. Cortical microinfarcts detected by 3-tesla magnetic resonance imaging: differentiation between cerebral amyloid angiopathy and embolism[J]. Stroke, 2020, 51(3): 1010-1013. DOI: 10.1161/STROKEAHA.119.028202.
[47]
FERRO D A, KUIJF H J, HILAL S, et al. Association between cerebral cortical microinfarcts and perilesional cortical atrophy on 3T MRI[J/OL]. Neurology, 2022, 98(6): e612-e622 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/34862322/. DOI: 10.1212/WNL.0000000000013140.
[48]
MARDANSHAHI Z, TAYEBI M, SHAFIEE S, et al. Evaluation of subacute subarachnoid haemorrhage detection using a magnetic resonance imaging sequence: double inversion recovery[J]. BioMedicine, 2020, 10(4): 29-35. DOI: 10.37796/2211-8039.1058.
[49]
CHOI N Y, PARK S, LEE C M, et al. The role of double inversion recovery imaging in acute ischemic stroke[J/OL]. Investig Magn Reson Imaging, 2019, 23(3): 210 [2024-05-15]. https://i-mri.org/DOIx.php?id=10.13104/imri.2019.23.3.210. DOI: 10.13104/imri.2019.23.3.210.
[50]
MARK I T, LUETMER P H, RYDBERG C H, et al. Signal intensity of perirolandic cortex identifies the central sulcus on double inversion recovery MRI[J]. J Neurosurg Sci, 2022, 66(1): 1-8. DOI: 10.23736/S0390-5616.19.04634-4.
[51]
LEHMAN V T, MARK I T, RYDBERG C H, et al. Multiple methods to identify the central sulcus and peri-rolandic cortex with double inversion recovery (DIR) MRI[J]. Neuroradiology, 2021, 63(9): 1393-1394. DOI: 10.1007/s00234-021-02763-2.
[52]
JOSHI H, HOCH M J, BRAILEANU M, et al. Reduced gray-white matter contrast localizes the motor cortex on double inversion recovery (DIR) 3T MRI[J]. Neuroradiology, 2021, 63(7): 1071-1078. DOI: 10.1007/s00234-020-02631-5.

PREV Research progress on brain structure and functional magnetic resonance imaging in patients with knee osteoarthritis pain
NEXT Advancements in the application of 7 T-MRI in cerebral small vessel disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn