Share:
Share this content in WeChat
X
Review
Advancements in the application of 7 T-MRI in cerebral small vessel disease
HUANG Peiyu  LIU Chen  ZHEN Zhiming  ZHANG Ruiting 

Cite this article as: HUANG P Y, LIU C, ZHEN Z M, et al. Advancements in the application of 7 T-MRI in cerebral small vessel disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 151-156. DOI:10.12015/issn.1674-8034.2024.09.026.


[Abstract] Cerebral small vessel disease has a high incidence rate among the elderly, significantly increasing the risk of stroke and dementia. To date, there are no effective clinical or fluid biomarkers for the disease, and its diagnosis heavily relies on MRI. However, due to the limited spatial resolution of clinical imaging, it's challenging to directly assess small vessel damage. Thus, researchers primarily use imaging biomarkers reflecting cerebral parenchymal damage to evaluate small vessel injury. In recent years, with the continuous maturation of ultra-high-field (7 T) MRI technology, its application in the field of cerebral small vessel disease has become increasingly extensive. 7 T-MRI can directly assess the structure and function of small cerebral vessels and significantly enhance the detection sensitivity of minor cerebral parenchymal lesions, providing important tools for the mechanism research and precise diagnosis of cerebral small vessel disease. This article will review the recent research on cerebral small vessel disease based on 7 T-MRI and discuss potential issues and future research directions, offering references for researchers in the field.
[Keywords] cerebral small vessel disease;magnetic resonance imaging;ultra-high field;time-of-flight magnetic resonance angiography;phase-contrast magnetic resonance angiography;susceptibility-weighted imaging

HUANG Peiyu1, 2*   LIU Chen1, 2   ZHEN Zhiming1, 2   ZHANG Ruiting1, 2  

1 Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China

2 7 T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

Corresponding author: HUANG P Y, E-mail: huangpy@zju.edu.cn

Conflicts of interest   None.

Received  2024-03-31
Accepted  2024-07-10
DOI: 10.12015/issn.1674-8034.2024.09.026
Cite this article as: HUANG P Y, LIU C, ZHEN Z M, et al. Advancements in the application of 7 T-MRI in cerebral small vessel disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 151-156. DOI:10.12015/issn.1674-8034.2024.09.026.

[1]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[2]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[3]
TOZER D J, BROWN R B, WALSH J, et al. Do regions of increased inflammation progress to new white matter hyperintensities?: A longitudinal positron emission tomography-magnetic resonance imaging study[J]. Stroke, 2023, 54(2): 549-557. DOI: 10.1161/STROKEAHA.122.039517.
[4]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral small vessel disease[J/OL]. Neuroimage, 2021, 238: 118257 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/34118396. DOI: 10.1016/j.neuroimage.2021.118257.
[5]
PANTONI L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol, 2010, 9(7): 689-701. DOI: 10.1016/S1474-4422(10)70104-6.
[6]
HAN F, ZHAI F F, WANG Q, et al. Prevalence and risk factors of cerebral small vessel disease in a Chinese population-based sample[J]. J Stroke, 2018, 20(2): 239-246. DOI: 10.5853/jos.2017.02401.
[7]
GROUP LS. 2001-2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease?[J]. Cerebrovasc Dis, 2011, 32(6): 577-588. DOI: 10.1159/000334498.
[8]
MARKUS H S, VAN DER FLIER W M, SMITH E E, et al. Framework for clinical trials in cerebral small vessel disease (FINESSE): a review[J]. JAMA Neurol, 2022, 79(11): 1187-1198. DOI: 10.1001/jamaneurol.2022.1436.
[9]
WARDLAW J M, VALDÉS HERNÁNDEZ M C, MUÑOZ-MANIEGA S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment[J/OL]. J Am Heart Assoc, 2015, 4(6): e001140 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/26104658. DOI: 10.1161/JAHA.114.001140.
[10]
GARNIER‐CRUSSARD A, COTTON F, KROLAK‐SALMON P, et al. White matter hyperintensities in Alzheimer's disease: Beyond vascular contribution[J]. Alzheimers Dement, 2023, 19(8): 3738-3748. DOI: 10.1002/alz.12801.
[11]
SAÏB G, GRAS V, MAUCONDUIT F, et al. Time-of-flight angiography at 7T using TONE double spokes with parallel transmission[J]. Magn Reson Imaging, 2019, 61: 104-115. DOI: 10.1016/j.mri.2019.05.013.
[12]
MEIXNER C R, LIEBIG P, SPEIER P, et al. High resolution time-of-flight MR-angiography at 7 T exploiting VERSE saturation, compressed sensing and segmentation[J]. Magn Reson Imaging, 2019, 63: 193-204. DOI: 10.1016/j.mri.2019.08.004.
[13]
SHAO X, MA S J, CASEY M, et al. Mapping water exchange across the blood-brain barrier using 3D diffusion‐prepared arterial spin labeled perfusion MRI[J]. Magn Reson Med, 2019, 81(5): 3065-3079. DOI: 10.1002/mrm.27637.
[14]
LAKHANI D A, ZHOU X, TAO S, et al. Clinical application of ultra-high resolution compressed sensing time-of-flight MR angiography at 7T to detect small vessel pathology[J]. Neuroradiol J, 2023, 36(3): 335-340. DOI: 10.1177/19714009221129576.
[15]
SHI Z, ZHAO X, ZHU S, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: visualization of distal small cerebral arteries[J]. Radiology, 2023, 306(1): 207-217. DOI: 10.1148/radiol.222236.
[16]
WANG L, ZHANG Y, SUI B, et al. Microaneurysm diagnosed with 7T magnetic resonance imaging[J/OL]. Stroke, 2022, 53(6): e224-e225 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/35450437/. DOI: 10.1161/STROKEAHA.122.038785.
[17]
KANG C K, WÖRZ S, LIAO W, et al. Three dimensional model-based analysis of the lenticulostriate arteries and identification of the vessels correlated to the infarct area: preliminary results[J]. Int J Stroke, 2012, 7(7): 558-563. DOI: 10.1111/j.1747-4949.2012.00812.x.
[18]
XU X, WU X, ZHU C, et al. Characterization of lenticulostriate arteries and its associations with vascular risk factors in community-dwelling elderly[J/OL]. Front Aging Neurosci, 2021, 13: 685571 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/34239436. DOI: 10.3389/fnagi.2021.685571.
[19]
WEI N, JING J, ZHUO Y, et al. Morphological characteristics of lenticulostriate arteries in a large age-span population: Results from 7T TOF-MRA[J/OL]. Front Neurol, 2022, 13: 944863 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/35937056. DOI: 10.3389/fneur.2022.944863.
[20]
YASHIRO S, KAMEDA H, CHIDA A, et al. Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes[J]. J Atheroscler Thromb, 2018, 25(10): 1067-1075. DOI: 10.5551/jat.43869.
[21]
AO D H, ZHANG D D, ZHAI F F, et al. Brain deep medullary veins on 3-T MRI in a population-based cohort[J]. J Cereb Blood Flow Metab, 2021, 41(3): 561-568. DOI: 10.1177/0271678X20918467.
[22]
ZHANG R, HUANG P, JIAERKEN Y, et al. Venous disruption affects white matter integrity through increased interstitial fluid in cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2021, 41(1): 157-165. DOI: 10.1177/0271678X20904840.
[23]
DE GUIO F, VIGNAUD A, ROPELE S, et al. Loss of venous integrity in cerebral small vessel disease: a 7-T MRI study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)[J]. Stroke, 2014, 45(7): 2124-2126. DOI: 10.1161/STROKEAHA.114.005726.
[24]
VAN HARTEN T W, HEIJMANS A, VAN ROODEN S, et al. Brain deep medullary veins on 7T MRI in dutch-type hereditary cerebral amyloid angiopathy[J]. J Alzheimers Dis, 2022, 90(1): 381-388. DOI: 10.3233/JAD-220354.
[25]
SHAABAN C E, AIZENSTEIN H J, JORGENSEN D R, et al. In vivo imaging of venous side cerebral small-vessel disease in older adults: An MRI method at 7T[J]. AJNR Am J Neuroradiol, 2017, 38(10): 1923-1928. DOI: 10.3174/ajnr.A5327.
[26]
LI C, RUSINEK H, CHEN J, et al. Reduced white matter venous density on MRI is associated with neurodegeneration and cognitive impairment in the elderly[J/OL]. Front Aging Neurosci, 2022, 14: 972282 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/36118685. DOI: 10.3389/fnagi.2022.972282.
[27]
XIE L, ZHANG Y, HONG H, et al. Higher intracranial arterial pulsatility is associated with presumed imaging markers of the glymphatic system: An explorative study[J/OL]. Neuroimage, 2024, 288: 120524 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/38278428. DOI: 10.1016/j.neuroimage.2024.120524.
[28]
ARTS T, ONKENHOUT L P, AMIER R P, et al. Non-invasive assessment of damping of blood flow velocity pulsatility in cerebral arteries with MRI[J]. J Magn Reson Imaging, 2022, 55(6): 1785-1794. DOI: 10.1002/jmri.27989.
[29]
ARTS T, MEIJS T A, GROTENHUIS H, et al. Velocity and pulsatility measures in the perforating arteries of the basal ganglia at 3T MRI in reference to 7T MRI[J/OL]. Front Neurosci, 2021, 15: 665480 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33981198. DOI: 10.3389/fnins.2021.665480.
[30]
VAN DEN BRINK H, KOPCZAK A, ARTS T, et al. CADASIL affects multiple aspects of cerebral small vessel function on 7T-MRI[J]. Ann Neurol, 2023, 93(1): 29-39. DOI: 10.1002/ana.26527.
[31]
GEURTS L J, ZWANENBURG J J, KLIJN C J, et al. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study[J]. Stroke, 2019, 50(1): 62-68. DOI: 10.1161/STROKEAHA.118.022129.
[32]
PEROSA V, ARTS T, ASSMANN A, et al. Pulsatility index in the basal ganglia arteries increases with age in elderly with and without cerebral small vessel disease[J]. AJNR Am J Neuroradiol, 2022, 43(4): 540-546. DOI: 10.3174/ajnr.A7450.
[33]
SUN C, WU Y, LING C, et al. Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC-MRA at 7T[J]. J Neurol Neurosurg Psychiatry, 2022, 93(4): 451-452. DOI: 10.1136/jnnp-2021-327055.
[34]
HUANG J, BIESSELS G J, DE LEEUW F E, et al. Cerebral microinfarcts revisited: detection, causes, and clinical relevance[J]. Int J Stroke, 2024, 19(1): 7-15. DOI: 10.1177/17474930231120658.
[35]
VAN VELUW S J, HILAL S, KUIJF H J, et al. Cortical microinfarcts on 3T MRI: clinical correlates in memory-clinic patients[J]. Alzheimers Dement, 2015, 11(12): 1500-1509. DOI: 10.1016/j.jalz.2015.05.016.
[36]
BRUNDEL M, REIJMER Y D, VAN VELUW S J, et al. Cerebral microvascular lesions on high-resolution 7-Tesla MRI in patients with type 2 diabetes[J]. Diabetes, 2014, 63(10): 3523-3529. DOI: 10.2337/db14-0245.
[37]
VAN VELUW S J, JOLINK W M, HENDRIKSE J, et al. Cortical microinfarcts on 7T MRI in patients with spontaneous intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2014, 34(7): 1104-1106. DOI: 10.1038/jcbfm.2014.75.
[38]
GHAZNAWI R, ZWARTBOL M, DE BRESSER J, et al. Microinfarcts in the deep gray matter on 7T MRI: Risk factors, MRI correlates, and Relation to cognitive functioning—the SMART-MR study[J]. AJNR Am J Neuroradiol, 2022, 43(6): 829-836. DOI: 10.3174/ajnr.A7500.
[39]
ZWARTBOL M H, RISSANEN I, GHAZNAWI R, et al. Cortical cerebral microinfarcts on 7T MRI: Risk factors, neuroimaging correlates and cognitive functioning-The Medea-7T study[J]. J Cereb Blood Flow Metab, 2021, 41(11): 3127-3138. DOI: 10.1177/0271678X211002029.
[40]
HALLER S, VERNOOIJ M W, KUIJER J P, et al. Cerebral microbleeds: imaging and clinical significance[J]. Radiology, 2018, 287(1): 11-28. DOI: 10.1148/radiol.2018172154.
[41]
BIAN W, HESS C P, CHANG S M, et al. Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T[J]. Neuroradiology, 2014, 56: 91-96. DOI: 10.1007/s00234-013-1317-1.
[42]
HALLER S, SCHEFFLER M, SALOMIR R, et al. MRI detection of cerebral microbleeds: size matters[J]. Neuroradiology, 2019, 61: 1209-1213. DOI: 10.1007/s00234-019-02266-1.
[43]
VAN VELUW S J, CHARIDIMOU A, VAN DER KOUWE A J, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study[J]. Brain, 2016, 139(12): 3151-3162. DOI: 10.1093/brain/aww229.
[44]
BRUNDEL M, HERINGA S M, DE BRESSER J, et al. High prevalence of cerebral microbleeds at 7 Tesla MRI in patients with early Alzheimer's disease[J]. J Alzheimers Dis, 2012, 31(2): 259-263. DOI: 10.3233/JAD-2012-112159.
[45]
ROTTA J, PEROSA V, YAKUPOV R, et al. Detection of cerebral microbleeds with venous connection at 7-Tesla MRI[J/OL]. Neurology, 2021, 96(16): e2048-e2057 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33653897. DOI: 10.1212/WNL.0000000000011967.
[46]
NI J, AURIEL E, MARTINEZ-RAMIREZ S, et al. Cortical localization of microbleeds in cerebral amyloid angiopathy: an ultra high-field 7T MRI study[J]. J Alzheimers Dis, 2015, 43(4): 1325-1330. DOI: 10.3233/JAD-142558.
[47]
HÜTTER B O, ALTMEPPEN J, KRAFF O, et al. Higher sensitivity for traumatic cerebral microbleeds at 7 T ultra-high field MRI: is it clinically significant for the acute state of the patients and later quality of life?[J/OL]. Ther Adv Neurol Disord, 2020, 13: 1756286420911295 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/32313555. DOI: 10.1177/1756286420911295.
[48]
HABLITZ L M, NEDERGAARD M. The glymphatic system: a novel component of fundamental neurobiology[J]. J Neurosci, 2021, 41(37): 7698-7711. DOI: 10.1523/JNEUROSCI.0319-21.2021.
[49]
BROWN R, BENVENISTE H, BLACK S E, et al. Understanding the role of the perivascular space in cerebral small vessel disease[J]. Cardiovasc Res, 2018, 114(11): 1462-1473. DOI: 10.1093/cvr/cvy113.
[50]
CHARIDIMOU A, BOULOUIS G, FROSCH M P, et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study[J]. Lancet Neurol, 2022, 21(8): 714-725. DOI: 10.1016/S1474-4422(22)00228-7.
[51]
GRANBERG T, MORIDI T, BRAND J S, et al. Enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis[J]. J Neurol, 2020, 267: 3199-3212. DOI: 10.1007/s00415-020-09935-4.
[52]
WANG S, HUANG P, ZHANG R, et al. Quantity and morphology of perivascular spaces: associations with vascular risk factors and cerebral small vessel disease[J]. J Magn Reson Imaging, 2021, 54(4): 1326-1336. DOI: 10.1002/jmri.27306.
[53]
CAI K, TAIN R, DAS S, et al. The feasibility of quantitative MRI of perivascular spaces at 7 T[J]. J Neurosci Methods, 2015, 256: 151-156. DOI: 10.1016/j.jneumeth.2015.09.019.
[54]
SHEN T, YUE Y, ZHAO S, et al. The role of brain perivascular space burden in early-stage Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2021, 7(1): 12 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/33547311. DOI: 10.1038/s41531-021-00158-1.
[55]
LIAN C, ZHANG J, LIU M, et al. Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images[J]. Med Image Anal, 2018, 46: 106-117. DOI: 10.1016/j.media.2018.03.005.
[56]
HUANG P, ZHANG R, JIAERKEN Y, et al. Deep white matter hyperintensity is associated with the dilation of perivascular space[J]. J Cereb Blood Flow Metab, 2021, 41(9): 2370-2380. DOI: 10.1177/0271678X211002279.
[57]
HUO Y, WANG Y, GUO C, et al. Deep white matter hyperintensity is spatially correlated to MRI-visible perivascular spaces in cerebral small vessel disease on 7 Tesla MRI[J]. Stroke Vasc Neurol, 2023, 8(2):144-150. DOI: 10.1136/svn-2021-000757.
[58]
BOUVY W H, VAN VELUW S J, KUIJF H J, et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer's disease: a 7 Tesla MRI study[J]. J Cereb Blood Flow Metab, 2020, 40(4): 739-746. DOI: 10.1177/0271678X19831595.
[59]
MA S J, SARABI M S, YAN L, et al. Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 Tesla[J]. Neuroimage, 2019, 199: 184-193. DOI: 10.1016/j.neuroimage.2019.05.065.
[60]
WANG Y, MOELLER S, LI X, et al. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T[J]. Neuroimage, 2015, 113: 279-288. DOI: 10.1016/j.neuroimage.2015.03.031.
[61]
VAN DEN BRINK H, KOPCZAK A, ARTS T, et al. Zooming in on cerebral small vessel function in small vessel diseases with 7T MRI: rationale and design of the "ZOOM@ SVDs" study[J/OL]. Cereb Circ Cogn Behav, 2021, 2: 100013 [2024-03-31]. https://pubmed.ncbi.nlm.nih.gov/36324717. DOI: 10.1016/j.cccb.2020.100013.

PREV Research progresses of MRI double inversion recovery sequence in central nervous system diseases
NEXT Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn