Share:
Share this content in WeChat
X
Review
Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke
ZHANG Qiang  XU Xiaoquan  WU Feiyun 

Cite this article as: ZHANG Q, XU X Q, WU F Y. Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(9): 157-161. DOI:10.12015/issn.1674-8034.2024.09.027.


[Abstract] The etiological classification of ischemic stroke is of great value for clinical treatment decision-making and prognosis. In recent years, with the increasing application of high-resolution vessel wall magnetic resonance imaging (HR-VW-MRI) in clinical research and practice of stroke, 7 T MRI with higher signal-to-noise ratio and better image quality can detect early and subtle pathological changes of cerebrovascular diseases, which provides new ideas for understanding the pathological mechanism of various cerebrovascular diseases. However, the ultra-high field strength also has technical challenges such as B1 field inhomogeneity and long scanning time. This article reviews the etiological classification and clinical application of 7 T HR-VW-MRI in ischemic stroke, and analyzes the potential value of 7 T HR-VW-MRI in improving the accuracy of clinical diagnosis and guiding clinical treatment, so as to provide reference for clinical practice and scientific research exploration.
[Keywords] ischemic stroke;7 T;ultra-high field;high-resolution vessel wall magnetic resonance imaging;magnetic resonance imaging

ZHANG Qiang1, 2   XU Xiaoquan1   WU Feiyun1*  

1 Department of Radiology, the First Affiliated Hospital With Nanjing Medical University, Nanjing 210000, China

2 Department of Radiology, the People's Hospital of Danyang, Zhenjiang 212300, China

Corresponding author: WU F Y, E-mail: wfy_njmu@163.com

Conflicts of interest   None.

Received  2024-04-26
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.027
Cite this article as: ZHANG Q, XU X Q, WU F Y. Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(9): 157-161. DOI:10.12015/issn.1674-8034.2024.09.027.

[1]
WU S, WU B, LIU M, et al. China Stroke Study Collaboration. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI: 10.1016/S1474-4422(18)30500-3.
[2]
ZHAI S J, JIA L, KUKUN H J, et al. Predictive power of high-resolution vessel wall magnetic resonance imaging in ischemic stroke[J/OL]. Am J Transl Res, 2022, 15, 14(1): 664-671 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35173884/.
[3]
LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review[J/OL]. Ann Transl Med, 2022, 10(12): 714 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35845481/. DOI: 10.21037/atm-22-2364.
[4]
WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(1): 156-160, 165. DOI: 10.12015/issn.1674-8034.2023.01.029.
[5]
YANG L, WANG X C. Application progress of high-resolution magnetic resonance vessel wall imaging in ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 136-139. DOI: 10.12015/issn.1674-8034.2022.05.028.
[6]
MICELI G, BASSO M G, RIZZO G, et al. Artificial intelligence in acute ischemic stroke subtypes according to toast classification: A comprehensive narrative review[J/OL]. Biomedicines, 2023, 10, 11(4): 1138 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37189756/. DOI: 10.3390/biomedicines11041138.
[7]
HARTEVELD A A, VAN DER KOLK A G, VAN DER WORP H B, et al. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7 T[J]. Eur Radiol, 2017, 27(4): 1585-1595. DOI: 10.1007/s00330-016-4483-3.
[8]
JONES S E, LEE J, LAW M. Neuroimaging at 3T vs 7T: Is it really worth it?[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 1-12. DOI: 10.1016/j.mric.2020.09.001.
[9]
ZHANG C, SHI J. 7T MRI for intracranial vessel wall lesions and its associated neurological disorders: A systematic review[J/OL]. Brain Sci, 2022, 21, 12(5): 528 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35624915/. DOI: 10.3390/brainsci12050528.
[10]
FAKIH R, ROA J A, BATHLA G, et al. Detection and quantification of symptomatic atherosclerotic plaques with high-resolution imaging in cryptogenic stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[11]
BOUVY W H, VAN VELUW S J, KUIJF H J, et al. Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer's disease: A 7 Tesla MRI study[J]. J Cereb Blood Flow Metab, 2020, 40(4): 739-746. DOI: 10.1177/0271678X19838087.
[12]
HOU C, LAN J, LIN Y, et al. Chronic remote ischemic conditioning in patients with symptomatic intracranial atherosclerotic stenosis (the RICA trial): a multicentre, randomised, double-blind sham-controlled trial in China[J]. Lancet Neurol. 2022, 21(12): 1089-1098. DOI: 10.1016/S1474-4422(22)00335-0.
[13]
SHAO X, YAN L, MA S J, et al. High-resolution neurovascular imaging at 7T: Arterial spin labeling perfusion, 4-dimensional MR angiography, and black blood MR imaging[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 53-65. DOI: 10.1016/j.mric.2020.09.003.
[14]
SUI B, SANNANANJA B, ZHU C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J/OL]. J Neurointerv Surg, 2023, 31: jnis-2023-020668 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37652689/. DOI: 10.1136/jnis-2023-020668.
[15]
HARTEVELD A A, DENSWIL N P, VAN HECKE W, et al. Ex vivo vessel wall thickness measurements of the human circle of Willis using 7T MRI[J]. Atherosclerosis, 2018, 273: 106-114. DOI: 10.1016/j.atherosclerosis.2018.04.023.
[16]
UNDERHILL H R, HATSUKAMI T S, FAYAD Z A, et al. MRI of carotid atherosclerosis: clinical implications and future directions[J]. Nat Rev Cardiol, 2010, 7(3): 165-173. DOI: 10.1038/nrcardio.2009.246.
[17]
HARTEVELD A A, DENSWIL N P, SIERO J C, et al. Quantitative intracranial atherosclerotic plaque characterization at 7T MRI: An ex vivo study with histologic validation[J]. AJNR Am J Neuroradiol, 2016, 37(5): 802-810. DOI: 10.3174/ajnr.A4628.
[18]
WANG Y, LIU X, WU X, et al. Culprit intracranial plaque without substantial stenosis in acute ischemic stroke on vessel wall MRI: A systematic review[J]. Atherosclerosis, 2019, 287: 112-121. DOI: 10.1016/j.atherosclerosis.2019.06.907.
[19]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/36573263/. DOI: 10.1177/15910199221145760.
[20]
SHOZUSHIMA M, MORI F, YASHIRO S, et al. Evaluation of high intracranial plaque prevalence in type 2 diabetes using vessel wall imaging on 7 T magnetic resonance imaging[J/OL]. Brain Sci, 2023, 28, 13(2): 217 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/36831760/. DOI: 10.3390/brainsci13020217.
[21]
RUTLAND J W, DELMAN B N, GILL C M, et al. Emerging use of ultra-high-field 7T MRI in the study of intracranial vascularity: State of the field and future directions[J]. AJNR Am J Neuroradiol, 2020, 41(1): 2-9. DOI: 10.3174/ajnr.A6344.
[22]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke. 2023 , 18(1): 28-35. DOI: 10.1177/17474930221091879.
[23]
LIANG H Q, WANG J, LIU C, et al. Research progress of 7.0T ultra-high field MRI in evaluating the relationship between lenticulostriate artery lesions and stroke related diseases[J]. Chin J Med Imaging, 2023, 31(12): 1323-1327. DOI: 10.3969/j.issn.1005-5185.2023.12.016.
[24]
KANG C K, PARK C W, HAN J Y, et al. Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography[J]. Magn Reson Med, 2009, 61(1): 136-144. DOI: 10.1002/mrm.21786.
[25]
CHO Z H, KANG C K, HAN J Y, et al. Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography[J]. Stroke, 2008, 39(5): 1604-1606. DOI: 10.1161/STROKEAHA.107.508002.
[26]
MIYAZAWA H, NATORI T, KAMEDA H, et al. Detecting lenticulostriate artery lesions in patients with acute ischemic stroke using high-resolution MRA at 7 T[J]. Int J Stroke, 2019, 14(3): 290-297. DOI: 10.1177/1747493018806163.
[27]
VAN DEN BRINK H, PHAM S, SIERO J C, et al. Assessment of small vessel function using 7T MRI in patients with sporadic cerebral small vessel disease: The ZOOM@SVDs Study[J/OL]. Neurology, 2024, 12, 102(5): e209136 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/38497722/. DOI: 10.1212/WNL.0000000000209136.
[28]
SAGLIETTOA, SCARSOGLIOS, TRIPOLIF, et al. Atrial fibrillation hemodynamic effects on lenticulostriate arteries identified at 7-Tesla cerebral magnetic resonance imaging[J/OL]. Clin Transl Med, 2023, 13(9): e1367 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/37735820/. DOI: 10.1002/ctm2.1367.
[29]
BAI X, FAN P, LI Z, et al. Evaluating middle cerebral artery plaque characteristics and lenticulostriate artery morphology associated with subcortical infarctions at 7T MRI[J]. J Magn Reson Imaging, 2024, 59(3): 1045-1055. DOI: 10.1002/jmri.28839.
[30]
BOLLMANN S, MATTERN H, BERNIER M, et al. Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography[J/OL]. Elife, 2022, 11: e71186 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/35486089/. DOI: 10.7554/eLife.71186.
[31]
XIE W, WANG C, LIU S, et al. Visualization of lenticulostriate artery by intracranial dark-blood vessel wall imaging and its relationships with lacunar infarction in basal ganglia: a retrospective study[J]. Eur Radiol, 2021, 31(8): 5629-5639. DOI: 10.1007/s00330-020-07642-7.
[32]
CHOJDAK-ŁUKASIEWICZ J, DZIADKOWIAK E, ZIMNY A, et al. Cerebral small vessel disease: A review[J]. Adv Clin Exp Med, 2021, 30(3): 349-356. DOI: 10.17219/acem/131216.
[33]
HU W L, YANG L, LI X T, et al. Chinese expert consensus on diagnosis and treatment of small cerebral vascular disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[34]
GUROL M E, BIESSELS G J, POLIMENI J R. Advanced neuroimaging to unravel mechanisms of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 29-37. DOI: 10.1161/STROKEAHA.119.024149.
[35]
BHAGAT R, MARINI S, ROMERO J R. Genetic considerations in cerebral small vessel diseases[J/OL]. Front Neurol, 2023, 14: 1080168 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37168667. DOI: 10.3389/fneur.2023.1080168.
[36]
ZWARTBOL M H, VAN DER KOLK A G, KUIJF H J, et al. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: The SMART-MR study[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1219-1228. DOI: 10.1177/0271678X20958517.
[37]
GOLL C, THORMANN M, HOFMÜLLER W, et al. Feasibility study: 7 T MRI in giant cell arteritis[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(6): 1111-1116. DOI: 10.1007/s00417-016-3337-7.
[38]
MURATA O, SASAKI N, SASAKI M, et al. Detection of cerebral microvascular lesions using 7 T MRI in patients with neuropsychiatric systemic lupus erythematosus[J]. Neuroreport, 2015, 26(1): 27-32. DOI: 10.1097/WNR.0000000000000297.
[39]
SIKKEMA T, UYTTENBOOGAART M, ESHGHI O, et al. Intracranial artery dissection[J]. Eur J Neurol, 2014, 21(6): 820-826. DOI: 10.1111/ene.12384.
[40]
SU Y, XIANG S F YANG S J, et al. Diagnostic value of high resolution magnetic resonance vessel wall imaging in vertebral artery dissection[J]. Journal of Cardio-Cerebrovascular Disease of Integrated Traditional Chinese and Western Medicine, 2023, 21(10): 1918-1920. DOI: 10.12102/j.issn.1672-1349.2023.10.040.
[41]
ZHANG X, HAN J, WANG J, et al. A comparative study of the etiology of intracranial vertebral artery dissection and carotid artery dissection[J]. Neurologist, 2023, 28(5): 281-286. DOI: 10.1097/NRL.0000000000000484.
[42]
LIU P, LI Z, HU L, et al. Clinical characteristics, endovascular choices, and surgical outcomes of intracranial vertebral artery dissecting aneurysms: a consecutive series of 196 patients[J]. J Neurosurg, 2022, 138(1): 215-222. DOI: 10.3171/2022.4.JNS22609.
[43]
SHI Z, TIAN X, TIAN B, et al. Identification of high risk clinical and imaging features for intracranial artery dissection using high-resolution cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 74 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/34120627/. DOI: 10.1186/s12968-021-00766-9.
[44]
HANIM K, JUNG S C, YOUNG C J, et al. Structural changes of intra and extracranial artery dissection: a study of high-resolution magnetic resonance imaging[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(3): 106302 [2024-04-26]. https://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/35038667/. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106302.
[45]
RYU J, LEE K M, KIM H G, et al. Diagnostic performance of high-resolution vessel wall magnetic resonance imaging and digital subtraction angiography in intracranial vertebral artery dissection[J]. Diagnostics (Basel), 2022, 12(2): 432 [2024-04-26]. DOI: 10.3390/diagnostics12020432.
[46]
KANG H G, LEE C H, SHIN B S, et al. Characteristics of symptomatic basilar artery stenosis using high-resolution magnetic resonance imaging in ischemic stroke patients[J]. J Atheroscler Thromb, 2021, 28(10): 1063-1070. DOI: 10.5551/jat.58214.
[47]
XIE X, ZHANG Z, KONG Q, et al. M2 middle cerebral artery dissection on 7T MRI[J/OL]. Stroke Vasc Neurol, 2022, 7(6): 550 [2024-04-26]. https://http://pubmed-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/30332725/. DOI: 10.1136/svn-2022-001557.
[48]
BELLIVEAU J G, BAUMAN G S, TAY K Y, et al. Initial investigation into microbleeds and white matter signal changes following radiotherapy for low-grade and benign brain tumors using ultra-high-field MRI techniques[J]. AJNR Am J Neuroradiol, 2017, 38(12): 2251-2256. DOI: 10.3174/ajnr.A5395.
[49]
VEERAIAH P, JANSEN J F A. Multinuclear magnetic resonance spectroscopy at ultra-high-field: Assessing human cerebral metabolism in healthy and diseased states[J/OL]. Metabolitesl, 2023, 13(4): 577 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/37110235/. DOI: 10.3390/metabo13040577.
[50]
BODLE J D, FELDMANN E, SWARTZ R H, et al. High-resolution magnetic resonance imaging: an emerging tool for evaluating intracranial arterial disease[J]. Stroke, 2013, 44(1): 287-292. DOI: 10.1161/STROKEAHA.112.664680.
[51]
KOOPS A, ITTRICH H, PETRI S, et al. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation[J]. Eur Radiol, 2007, 17(1): 279-286. DOI: 10.1007/s00330-006-0265-7.
[52]
VAN DER KOLK A G, ZWANENBURG J J, BRUNDEL M, et al. Intracranial vessel wall imaging at 7.0-T MRI[J]. Stroke, 2011, 42(9): 2478-2484. DOI: 10.1161/STROKEAHA.111.620443.
[53]
FAGAN A J, BITZ A K, BJÖRKMAN-BURTSCHER I M, et al. 7T MR Safety[J]. J Magn Reson Imaging, 2021, 53(2): 333-346. DOI: 10.1002/jmri.27319.
[54]
OKADA T, AKASAKA T, THUY D H, et al. Safety for Human MR Scanners at 7T[J]. Magn Reson Med Sci, 2022, 21(4): 531-537. DOI: 10.2463/mrms.rev.2021-0063.
[55]
SEO J H, HAN Y, CHUNG J Y. A comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging[J/OL]. Sensors (Basel), 2022, 22(5): 1741 [2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/35270889/. DOI: 10.3390/s22051741.

PREV Advancements in the application of 7 T-MRI in cerebral small vessel disease
NEXT Research progress of artificial intelligence in pituitary tumor magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn