Share:
Share this content in WeChat
X
Review
Research progress of artificial intelligence in pituitary tumor magnetic resonance imaging
JIA Wenjing  WANG Lijun 

Cite this article as: JIA W J, WANG L J. Research progress of artificial intelligence in pituitary tumor magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 162-166. DOI:10.12015/issn.1674-8034.2024.09.028.


[Abstract] Pituitary tumor is one of the common tumors of the nervous system, and MRI can accurately show the size, shape, location, and invasiveness of the tumor. With the rapid development of technology, imagingomics and deep learning have become hot topics for artificial intelligence in the medical field, and research on pituitary tumor MRI is increasing. Artificial intelligence plays an important role in the selection of treatment options and prognosis prediction for pituitary tumor MRI, providing strong clinical evidence for the diagnosis and treatment of pituitary tumors. This review summarizes the research progress of artificial intelligence in pituitary tumor MRI. This review will provide assistance in the selection of treatment options and prediction of prognosis for patients with pituitary tumors.
[Keywords] pituitary tumor;magnetic resonance imaging;artificial intelligence;imaging omics;deep learning;surgical selection;prognosis prediction

JIA Wenjing1, 2   WANG Lijun1*  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Department of Radiology, Dandong Central Hospital, Dandong 118000, China

Corresponding author: WANG L J, E-mail: wanglj345@163.com

Conflicts of interest   None.

Received  2024-05-10
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.028
Cite this article as: JIA W J, WANG L J. Research progress of artificial intelligence in pituitary tumor magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2024, 15(9): 162-166. DOI:10.12015/issn.1674-8034.2024.09.028.

[1]
MELMED S. Pituitary-tumor endocrinopathies[J]. N Engl J Med, 2020, 382(10): 937-950. DOI: 10.1056/NEJMra1810772.
[2]
OSTROM Q T, PRICE M, NEFF C, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019[J]. Neuro Oncol, 2022, 24(Supplement_5): v1-v95. DOI: 10.1093/neuonc/noac202.
[3]
CHEN Y, WANG C D, SU Z P, et al. Natural history of postoperative nonfunctioning pituitary adenomas: A systematic review and meta-analysis[J]. Neuroendocrinology, 2012, 96(4): 333-342. DOI: 10.1159/000339823.
[4]
PRESSMAN B D. Pituitary imaging[J]. Endocrinol Metab Clin North Am, 2017, 46(3): 713-740. DOI: 10.1016/j.ecl.2017.04.012.
[5]
MACFARLANE J, BASHARI W A, SENANAYAKE R, et al. Advances in the imaging of pituitary tumors[J]. Endocrinol Metab Clin North Am, 2020, 49(3): 357-373. DOI: 10.1016/j.ecl.2020.06.002.
[6]
MAHAJAN A, BRONEN R A, MIAN A Y, et al. Diagnosis and management of pituitary disease with focus on the role of magnetic resonance imaging[J]. Endocrine, 2020, 68(3): 489-501. DOI: 10.1007/s12020-020-02242-3.
[7]
DONG S, WANG P, ABBAS K. A survey on deep learning and its applications[J/OL]. Comput Sci Rev, 2021, 40: 100379 [2024-05-10]. https://www.sciencedirect.com/science/article/pii/S1574013721000198. DOI: 10.1016/j.cosrev.2021.100379.
[8]
JANIESCH C, ZSCHECH P, HEINRICH K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3): 685-695. DOI: 10.1007/s12525-021-00475-2.
[9]
AVANZO M, WEI L, STANCANELLO J, et al. Machine and deep learning methods for radiomics[J/OL]. Med Phys, 2020, 47(5): e185-e202 [2024-05-10]. https://pubmed.vpn1.xue338.com/32418336/. DOI: 10.1002/mp.13678.
[10]
THOMPSON A C, JAMMAL A A, MEDEIROS F A. A review of deep learning for screening, diagnosis, and detection of glaucoma progression[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 42 [2024-05-10]. https://pubmed.vpn1.xue338.com/32855846/. DOI: 10.1167/tvst.9.2.42.
[11]
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
[12]
SHUR J D, DORAN S J, KUMAR S, et al. Radiomics in oncology: A practical guide[J]. Radiographics, 2021, 41(6): 1717-1732. DOI: 10.1148/rg.2021210037.
[13]
LIU M T, ZHANG J Y, XU L, et al. A multivariate model based on gadoxetic acid-enhanced MRI using Li-RADS v2018 and other imaging features for preoperative prediction of dual-phenotype hepatocellular carcinoma[J]. Radiol Med, 2023, 128(11): 1333-1346. DOI: 10.1007/s11547-023-01715-5.
[14]
WANG D, ZHANG L, SUN Z, et al. A radiomics signature associated with underlying gene expression pattern for the prediction of prognosis and treatment response in hepatocellular carcinoma[J/OL]. Eur J Radiol, 2023, 167: 111086 [2024-05-10]. https://pubmed.vpn1.xue338.com/37708675/. DOI: 10.1016/j.ejrad.2023.111086.
[15]
ZHENG W, CHEN X, XIONG M, et al. Clinical-radiologic morphology-radiomics model on gadobenate dimeglumine-enhanced MRI for identification of highly aggressive hepatocellular carcinoma: Temporal validation and multiscanner validation[J/OL]. J Magn Reson Imaging, 2024 [2024-05-10]. https://pubmed.vpn1.xue338.com/38375988/. DOI: 10.1002/jmri.29293.
[16]
LAFCI O, CELEPLI P, SEHER ÖZTEKIN P, et al. DCE-MRI radiomics analysis in differentiating Luminal A and Luminal B breast cancer molecular subtypes[J]. Acad Radiol, 2023, 30(1): 22-29. DOI: 10.1016/j.acra.2022.04.004.
[17]
LI T, SUN L, LI Q, et al. Development and validation of a radiomics nomogram for predicting clinically significant prostate cancer in PI-RADS 3 lesions[J/OL]. Front Oncol, 2022, 11: 825429 [2024-05-10]. https://pubmed.vpn1.xue338.com/35155214/. DOI: 10.3389/fonc.2021.825429.
[18]
GU Y, HUANG H, TONG Q, et al. Multi-view radiomics feature fusion reveals distinct immuno-oncological characteristics and clinical prognoses in hepatocellular carcinoma[J/OL]. Cancers (Basel), 2023, 15(8): 2338 [2024-05-10]. https://pubmed.vpn1.xue338.com/37190266/. DOI: 10.3390/cancers15082338.
[19]
RAMTOHUL T, DJERROUDI L, LISSAVALID E, et al. Multiparametric MRI and radiomics for the prediction of HER2-zero, -low, and -positive breast cancers[J/OL]. Radiology, 2023, 308(2): e222646 [2024-05-10]. https://pubmed.vpn1.xue338.com/37526540/. DOI: 10.1148/radiol.222646.
[20]
WALLS G M, OSMAN S O S, BROWN K H, et al. Radiomics for predicting lung cancer outcomes following radiotherapy: A systematic review[J/OL]. Clin Oncol, 2022, 34(3): e107-e122 [2024-05-10]. https://pubmed.vpn1.xue338.com/34763965/. DOI: 10.1016/j.clon.2021.10.006.
[21]
ZHANG X, CUI C, ZHAO S, et al. Cardiac magnetic resonance radiomics for disease classification[J]. Eur Radiol, 2022, 33(4): 2312-2323. DOI: 10.1007/s00330-022-09236-x.
[22]
MUSHARI N A, SOULTANIDIS G, DUFF L, et al. Exploring the utility of cardiovascular magnetic resonance radiomic feature extraction for evaluation of cardiac sarcoidosis[J/OL]. Diagnostics (Basel), 2023, 13(11): 1865 [2024-05-10]. https://pubmed.vpn1.xue338.com/37296722/. DOI: 10.3390/diagnostics13111865.
[23]
ZHAN C, TANG T, WU E, et al. From multi-omics approaches to personalized medicine in myocardial infarction[J/OL]. Front Cardiovasc Med, 2023, 10: 1250340 [2024-05-10]. https://pubmed.vpn1.xue338.com/37965091/. DOI: 10.3389/fcvm.2023.1250340.
[24]
PU C, HU X, LV S, et al. Identification of fibrosis in hypertrophic cardiomyopathy: a radiomic study on cardiac magnetic resonance cine imaging[J]. Eur Radiol, 2022, 33(4): 2301-2311. DOI: 10.1007/s00330-022-09217-0.
[25]
GARCÍA-LUNAR I, JORGE I, SÁIZ J, et al. Metabolic changes contribute to maladaptive right ventricular hypertrophy in pulmonary hypertension beyond pressure overload: an integrative imaging and omics investigation[J]. Basic Res Cardiol, 2024: 1-15. DOI: 10.1007/s00395-024-01041-5.
[26]
WANG D, JASIM TAHER H, AL-FATLAWI M, et al. Multi-parametric assessment of cardiac magnetic resonance images to distinguish myocardial infarctions: A tensor-based radiomics feature[J]. J Xray Sci Technol, 2024, DOI: : 1-15. DOI: 10.3233/XST-230307.
[27]
LIU Q, LU Q, CHAI Y, et al. Papillary-muscle-derived radiomic features for hypertrophic cardiomyopathy versus hypertensive heart disease classification[J/OL]. Diagnostics (Basel), 2023, 13(9): 1544 [2024-05-10]. https://pubmed.vpn1.xue338.com/37174935/. DOI: 10.3390/diagnostics13091544.
[28]
PUJADAS E R, RAISI-ESTABRAGH Z, SZABO L, et al. Prediction of incident cardiovascular events using machine learning and CMR radiomics[J]. Eur Radiol, 2022, 33(5): 3488-3500. DOI: 10.1007/s00330-022-09323-z.
[29]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[30]
VAN TIMMEREN J E, CESTER D, TANADINI-LANG S, et al. Radiomics in medical imaging—"how-to" guide and critical reflection[J/OL]. Insights Imaging, 2020, 11(1): 91 [2024-05-10]. https://pubmed.vpn1.xue338.com/32785796/. DOI: 10.1186/s13244-020-00887-2.
[31]
ALIMOHAMADI M, SANJARI R, MORTAZAVI A, et al. Predictive value of diffusion-weighted MRI for tumor consistency and resection rate of nonfunctional pituitary macroadenomas[J]. Acta Neurochir (Wien), 2014, 156(12): 2245-2252. DOI: 10.1007/s00701-014-2259-6.
[32]
DAI C, LIU X, MA W, et al. The Treatment of Refractory Pituitary Adenomas[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 334 [2024-05-10]. https://pubmed.vpn1.xue338.com/31191457/. DOI: 10.3389/fendo.2019.00334.
[33]
SMITH K, LEEVER J, CHAMOUN R. Prediction of consistency of pituitary adenomas by magnetic resonance imaging[J]. J Neurol Surg B Skull Base, 2015, 76(5): 340-343. DOI: 10.1055/s-0035-1549005.
[34]
CUOCOLO R, UGGA L, SOLARI D, et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI[J]. Neuroradiology, 2020, 62(12): 1649-1656. DOI: 10.1007/s00234-020-02502-z.
[35]
ZEYNALOVA A, KOCAK B, DURMAZ E S, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI[J/OL]. Neuroradiology, 2019, 61(7): 767-774. DOI: 10.1007/s00234-019-02211-2.
[36]
WANG H, ZHANG W, LI S, et al. Development and evaluation of deep learning-based automated segmentation of pituitary adenoma in clinical task[J]. J Clin Endocrinol Metab, 2021, 106(9): 2535-2546. DOI: 10.1210/clinem/dgab371.
[37]
WAN T, ZHAO H, LI D Y, et al. Preoperative evaluation of pituitary macroadenomas consistency using radiomic features from multi-parametric MRI[J]. Chin J Biomed Eng, 2021, 40 (05): 513-520. DOI: 10.3969/j.issn.0258-8021.2021.05.001.
[38]
WAN T, WU C, MENG M, et al. Radiomic Features on multiparametric MRI for preoperative evaluation of pituitary Macroadenomas consistency: Preliminary findings[J]. J Magn Reson Imaging, 2022, 55(5): 1491-1503. DOI: 10.1002/jmri.27930.
[39]
ZHAO J P. The value of radiomics combined with clinical in predicting high proliferation index of Ki-67 and postoperative recurrence in non-functional pituitary macroadenomas[D]. Shenyang: China Medical University, 2023. DOI: 10.27652/d.cnki.gzyku.2023.001993.
[40]
UGGA L, CUOCOLO R, SOLARI D, et al. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning[J]. Neuroradiology, 2019, 61(12): 1365-1373. DOI: 10.1007/s00234-019-02266-1.
[41]
LI H, LIU Z, LI F, et al. Preoperatively predicting Ki67 expression in pituitary adenomas using deep segmentation network and radiomics analysis based on multiparameter MRI[J]. Acad Radiol, 2024, 31(2): 617-627. DOI: 10.1016/j.acra.2023.05.023.
[42]
BURMAN P, CASAR-BOROTA O, PEREZ-RIVAS L G, et al. Aggressive pituitary tumors and pituitary carcinomas: From pathology to treatment[J]. J Clin Endocrinol Metab, 2023, 108(7): 1585-1601. DOI: 10.1210/clinem/dgad098.
[43]
LIU Y Q, GAO B B, DONG B, et al. Preoperative vascular heterogeneity and aggressiveness assessment of pituitary macroadenoma based on dynamic contrast-enhanced MRI texture analysis[J/OL]. Eur J Radiol, 2020, 129: 109125 [2024-05-10]. https://pubmed.vpn1.xue338.com/32593076/. DOI: 10.1016/j.ejrad.2020.109125.
[44]
NIU J, ZHANG S, MA S, et al. Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images[J]. Eur Radiol, 2019, 29(3): 1625-1634. DOI: 10.1007/s00330-018-5725-3.
[45]
ZHANG C, HENG X, NENG W, et al. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning[J/OL]. Chin Neurosurg J, 2022, 8(1): 21 [2024-05-10]. https://pubmed.vpn1.xue338.com/35962442/. DOI: 10.1186/s41016-022-00290-4.
[46]
WANG X, DAI Y, LIN H, et al. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas[J]. Eur Radiol, 2023, 33(5): 3312-3321. DOI: 10.1007/s00330-023-09412-7.
[47]
ZHANG Y, KO C C, CHEN J H, et al. Radiomics approach for prediction of recurrence in non-functioning pituitary macroadenomas[J/OL]. Front Oncol, 2020, 10 [2024-05-10]. https://pubmed.vpn1.xue338.com/33392084/. DOI: 10.3389/fonc.2020.590083.
[48]
MACHADO L F, ELIAS P C L, MOREIRA A C, et al. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas[J/OL]. Comput Biol Med, 2020, 124: 103966 [2024-05-10]. https://pubmed.vpn1.xue338.com/32860977/. DOI: 10.1016/j.compbiomed.2020.103966.
[49]
ZHANG Y, LUO Y, KONG X, et al. A preoperative MRI-based radiomics-clinicopathological classifier to predict the recurrence of pituitary macroadenoma within 5 years[J/OL]. Front Neurol, 2022, 12 [2024-05-10]. https://pubmed.vpn1.xue338.com/35069413/. DOI: 10.3389/fneur.2021.780628.
[50]
SHEN C, LIU X, JIN J, et al. A novel magnetic resonance imaging-based radiomics and clinical predictive model for the regrowth of postoperative residual tumor in non-functioning pituitary neuroendocrine tumor[J/OL]. Medicina (Kaunas), 2023, 59(9): 1525 [2024-05-10]. https://pubmed.vpn1.xue338.com/37763643/. DOI: 10.3390/medicina59091525.
[51]
CHEN Y J, HSIEH H P, HUNG K C, et al. Deep learning for prediction of progression and recurrence in nonfunctioning pituitary macroadenomas: Combination of clinical and MRI features[J/OL]. Front Oncol, 2022, 12: 813806 [2024-05-10]. https://pubmed.vpn1.xue338.com/35515108/. DOI: 10.3389/fonc.2022.813806.
[52]
HOLLON T C, PARIKH A, PANDIAN B, et al. A machine learning approach to predict early outcomes after pituitary adenoma surgery[J/OL]. Neurosurg Focus, 2018, 45(5): E8 [2024-05-10]. https://pubmed.vpn1.xue338.com/30453460/. DOI: 10.3171/2018.8.FOCUS18268.

PREV Advances of 7 T ultra-high field magnetic resonance intracranial vessel wall imaging in the etiology classification of ischemic stroke
NEXT Study progress of MRI on vulnerable plaques in carotid arteries
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn