Share:
Share this content in WeChat
X
Review
Study progress of MRI on vulnerable plaques in carotid arteries
ZHOU Tingting  KANG Liqing  SONG Yancheng 

Cite this article as: ZHOU T T, KANG L Q, SONG Y C. Study progress of MRI on vulnerable plaques in carotid arteries[J]. Chin J Magn Reson Imaging, 2024, 15(9): 167-171, 188. DOI:10.12015/issn.1674-8034.2024.09.029.


[Abstract] Vulnerable carotid artery plaque is an important risk factor for acute ischemic stroke, which is closely related to the occurrence, development and recurrence of acute ischemic stroke. Accurate assessment of carotid vulnerable plaque is important for improving risk stratification, guiding clinical treatment and improving prognosis of AIS. High-resolution vessel wall imaging, MRI radiomics and 4D flow magnetic resonance imaging can be used to assess vulnerable carotid plaque in different ways. This article reviews the progress of common techniques and values of MRI in evaluating vulnerable carotid artery plaques, so as to provide imaging guidance for the selection of targeted measures to prevent the occurrence, progression and recurrence of stroke.
[Keywords] vulnerable plaque;ischemic stroke;magnetic resonance imaging;vascular wall imaging;radiomics;four dimensional hemodynamics

ZHOU Tingting1   KANG Liqing1, 2*   SONG Yancheng2  

1 Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, Hebei Medical University, Cangzhou 061000, China

2 Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, Cangzhou 061000, China

Corresponding author: KANG L Q, E-mail: 1513203473@qq.com

Conflicts of interest   None.

Received  2024-06-05
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.029
Cite this article as: ZHOU T T, KANG L Q, SONG Y C. Study progress of MRI on vulnerable plaques in carotid arteries[J]. Chin J Magn Reson Imaging, 2024, 15(9): 167-171, 188. DOI:10.12015/issn.1674-8034.2024.09.029.

[1]
COLLABORATORS G2 S. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[2]
WANG Y N, WU S M, LIU M. Temporal trends and characteristics of stroke in China in the past 15 years[J]. West China Med J, 2021, 36(6): 803-807. DOI: 10.7507/1002-0179.202105046.
[3]
SUN T, CHEN S Y, WU K, et al. Trends in incidence and mortality of stroke in China from 1990 to 2019[J/OL]. Front Neurol, 2021, 12: 759221 [2024-06-04]. https://pubmed.ncbi.nlm.nih.gov/34880825/. DOI: 10.3389/fneur.2021.759221.
[4]
KAMEL H, NAVI B B, MERKLER A E, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque[J]. Stroke, 2020, 51(2): 504-510. DOI: 10.1161/STROKEAHA.119.027970.
[5]
OSPEL J M, MARKO M, SINGH N, et al. Prevalence of non-stenotic (<50%) carotid plaques in acute ischemic stroke and transient ischemic attack: a systematic review and meta-analysis[J/OL]. J Stroke Cerebrovasc Dis, 2020, 29(10): 105117 [2024-06-04]. https://pubmed.ncbi.nlm.nih.gov/32912562/. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105117.
[6]
ZHANG L H, GUO Y K, ZHOU W, et al. Characteristics of non-stenotic carotid plaque in embolic stroke of undetermined source compared with cardiogenic embolism: a retrospective cross-sectional observational study[J/OL]. BMC Neurol, 2022, 22(1): 315 [2023-12-13] https://www.ncbi.nlm.nih.gov/pubmed/36008791. DOI: 10.1186/s12883-022-02846-4.
[7]
SABA L, YUAN C, HATSUKAMI T S, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American society of neuroradiology[J/OL]. AJNR Am J Neuroradiol, 2018, 39(2): E9-E31 [2024-03-22] https://www.ncbi.nlm.nih.gov/pubmed/29326139. DOI: 10.3174/ajnr.A5488.
[8]
XU Y X, ZHANG S, ZHOU X M, et al. Correlation of non-stenotic carotid plaque with anterior circulation embolic stroke of undetermined source[J]. Chin J Stroke, 2022, 17(11): 1233-1237. DOI: 10.3969/j.issn.1673-5765.2022.11.013.
[9]
ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3605-3613. DOI: 10.1007/s10072-021-05457-y.
[10]
ZHANG R Y, ZHANG Q W, JI A H, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning[J]. Eur Radiol, 2021, 31(5): 3116-3126. DOI: 10.1007/s00330-020-07361-z.
[11]
ZHANG G L, ZHANG S, QIN Y Y, et al. Differences in wall shear stress between high-risk and low-risk plaques in patients with moderate carotid artery stenosis: a 4D flow MRI study[J/OL]. Front Neurosci, 2021, 15: 678358 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/34456667. DOI: 10.3389/fnins.2021.678358.
[12]
SUN Y, XU L, JIANG Y, et al. Significance of high resolution MRI in the identification of carotid plaque[J]. Exp Ther Med, 2020, 20(4): 3653-3660. DOI: 10.3892/etm.2020.9091.
[13]
WU X B, HUANG L X, HUANG Z R, et al. The lymphocyte-to-monocyte ratio predicts intracranial atherosclerotic stenosis plaque instability[J/OL]. Front Immunol, 2022, 13: 915126 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/35935982. DOI: 10.3389/fimmu.2022.915126.
[14]
HOU Y W, REN L, CAO C, et al. The additional value of high-resolution vessel wall imaging in screening suitable chronic internal carotid artery occlusion candidates for endovascular recanalization: comparison with digital subtraction angiography[J]. Acta Radiol, 2023, 64(4): 1702-1711. DOI: 10.1177/02841851221127563.
[15]
PAKIZER D, KOZEL J, ELMERS J, et al. Diagnostics accuracy of magnetic resonance imaging in detection of atherosclerotic plaque characteristics in carotid arteries compared to histology: a systematic review[J/OL]. J Magn Reson Imaging, 2024 [2024-06-05]. https://www.ncbi.nlm.nih.gov/pubmed/38981139. DOI: 10.1002/jmri.29522.
[16]
REN L, XU R J, ZHAO C X, et al. Tortuosity and proximal-specific hemodynamics associated with plaque location in the carotid bulb stenosis[J]. J Vasc Res, 2023, 60(3): 160-171. DOI: 10.1159/000531584.
[17]
YANG W, WASSERMAN B A, YANG H, et al. Characterization of Restenosis following Carotid Endarterectomy Using Contrast-Enhanced Vessel Wall MR Imaging[J]. AJNR Am J Neuroradiol, 2022, 43(3): 422-428. DOI: 10.3174/ajnr.A7423.
[18]
ZHAO X Q, SUN J, HIPPE D S, et al. Magnetic resonance imaging of intraplaque hemorrhage and plaque lipid content with continued lipid-lowering therapy: results of a magnetic resonance imaging substudy in AIM-HIGH[J/OL]. Circ Cardiovasc Imaging, 2022, 15(11): e014229 [2024-06-05]. https://pubmed.ncbi.nlm.nih.gov/36378778/. DOI: 10.1161/CIRCIMAGING.122.014229.
[19]
JIANG C, MENG Q, ZHAO K Q, et al. Vulnerable carotid plaque characteristics on magnetic resonance vessel wall imaging: potential predictors for hemodynamic instability during carotid artery stenting[J]. Quant Imaging Med Surg, 2023, 13(6): 3441-3450. DOI: 10.21037/qims-22-865.
[20]
MITCHELL C C, KORCARZ C E, GEPNER A D, et al. Carotid artery echolucency, texture features, and incident cardiovascular disease events: the MESA study[J/OL]. J Am Heart Assoc, 2019, 8(3): e010875 [2024-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/30681393. DOI: 10.1161/JAHA.118.010875.
[21]
SHI J L, SUN Y, HOU J, et al. Radiomics signatures of carotid plaque on computed tomography angiography: an approach to identify symptomatic plaques[J]. Clin Neuroradiol, 2023, 33(4): 931-941. DOI: 10.1007/s00062-023-01289-9.
[22]
CHEN Y F, CHEN Z J, LIN Y Y, et al. Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm[J/OL]. Front Cardiovasc Med, 2023, 10: 1101765 [2024-06-04]. https://www.ncbi.nlm.nih.gov/pubmed/36910524. DOI: 10.3389/fcvm.2023.1101765.
[23]
KAMADA H, NAKAMURA M, OTA H, et al. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases[J]. J Cardiol, 2022, 80(5): 386-396. DOI: 10.1016/j.jjcc.2022.05.007.
[24]
SAYED R E, SHARIFI A, PARK C C, et al. Optimization of 4D flow MRI spatial and temporal resolution for examining complex hemodynamics in the carotid artery bifurcation[J]. Cardiovasc Eng Technol, 2023, 14(3): 476-488. DOI: 10.1007/s13239-023-00667-1.
[25]
ZHOU M L, YU Y F, CHEN R Y, et al. Wall shear stress and its role in atherosclerosis[J/OL]. Front Cardiovasc Med, 2023, 10: 1083547 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/37077735. DOI: 10.3389/fcvm.2023.1083547.
[26]
TUENTER A, SELWANESS M, ARIAS LORZA A, et al. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques[J/OL]. Atherosclerosis, 2016, 251: 348-354 [2024-05-24]. https://pubmed.ncbi.nlm.nih.gov/27263078/. DOI: 10.1016/j.atherosclerosis.2016.05.018.
[27]
SAVASTANO L, MOUSAVI H, LIU Y, et al. Unifying theory of carotid plaque disruption based on structural phenotypes and forces expressed at the lumen/wall interface[J]. Stroke Vasc Neurol, 2022, 7(6): 465-475. DOI: 10.1136/svn-2021-001451.
[28]
NAGHAVI M, LIBBY P, FALK E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I [J]. Circulation, 2003, 108(14): 1664-1672, DOI: 10.1161/01.Cir.0000087480.94275.97.
[29]
BALMOS I A, SLEVIN M, BRINZANIUC K, et al. Intraplaque neovascularization, CD68+ and iNOS2+ macrophage infiltrate intensity are associated with atherothrombosis and intraplaque hemorrhage in severe carotid atherosclerosis[J/OL]. Biomedicines, 2023, 11(12): 3275 [2024-05-24]. https://pubmed.ncbi.nlm.nih.gov/38137496/. DOI: 10.3390/biomedicines11123275.
[30]
HUO R, YUAN W Z, XU H M, et al. Investigating the association of carotid atherosclerotic plaque MRI features and silent stroke after carotid endarterectomy[J]. J Magn Reson Imaging, 2024, 60(1): 138-149. DOI: 10.1002/jmri.29115.
[31]
TAKAYA N, YUAN C, CHU B C, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study[J]. Circulation, 2005, 111(21): 2768-2775. DOI: 10.1161/CIRCULATIONAHA.104.504167.
[32]
CANTON G, BAYLAM GELERI D, HIPPE D S, et al. Pathophysiology of carotid atherosclerosis: Calcification, intraplaque haemorrhage and pulse pressure as key players[J/OL]. Eur J Radiol, 2024, 178: 111647 [2024-08-05]. https://www.ncbi.nlm.nih.gov/pubmed/39068857. DOI: 10.1016/j.ejrad.2024.111647.
[33]
TAO L, WANG X H, LI X Q, et al. Intracranial plaque with large lipid core is associated with embolic stroke of undetermined source[J]. Ann Clin Transl Neurol, 2023, 10(3): 363-372. DOI: 10.1002/acn3.51726.
[34]
FENG Y Y, GAO X, SONG J Y, et al. Analysis of the correlation between lipid-necrotic core and carotid plaque burden and clinical factors based on high-resolution magnetic resonance imaging[J]. Int J Med Radiol, 2022, 45(5): 497-502, 514. DOI: 10.19300/j.2022.L19412.
[35]
KOPCZAK A, SCHINDLER A, SEPP D, et al. Complicated carotid artery plaques and risk of recurrent ischemic stroke or TIA[J]. J Am Coll Cardiol, 2022, 79(22): 2189-2199. DOI: 10.1016/j.jacc.2022.03.376.
[36]
RIZVI A, SEYEDSAADAT S M, ALZUABI M, et al. Carotid plaque vulnerability on magnetic resonance imaging and risk of future ischemic events: a systematic review and meta-analysis[J]. J Neurosurg Sci, 2020, 64(5): 480-486. DOI: 10.23736/S0390-5616.20.04959-0.
[37]
LI H W, WANG Y J, SHEN M, et al. Association between PROCR polymorphism and thin or ruptured fibrous cap of carotidartery plaque[J]. Cardio Cerebrovasc Dis Prev Treat, 2019, 19(5): 394-396, 404. DOI: 10.3969/j.issn.1009-816x.2019.05.002.
[38]
BURKE-KLEINMAN J, GOTLIEB A I. Progression of arterial Vasa vasorum from regulator of arterial homeostasis to promoter of atherogenesis[J]. Am J Pathol, 2023, 193(10): 1468-1484. DOI: 10.1016/j.ajpath.2023.06.003.
[39]
CUI L P, XING Y Q, WANG L J, et al. Carotid intraplaque neovascularization and future vascular events in patients with asymptomatic carotid stenosis[J/OL]. Front Pharmacol, 2022, 13: 804810 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/35273496. DOI: 10.3389/fphar.2022.804810.
[40]
BALMOS I A, HORVÁTH E, BRINZANIUC K, et al. Inflammation, microcalcification, and increased expression of osteopontin are histological hallmarks of plaque vulnerability in patients with advanced carotid artery stenosis[J/OL]. Biomedicines, 2023, 11(3): 881 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/36979863. DOI: 10.3390/biomedicines11030881.
[41]
ZHENG Y L, LIM M J R, TAN B Y, et al. Role of plaque inflammation in symptomatic carotid stenosis[J/OL]. Front Neurol, 2023, 14: 1086465 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/36761341. DOI: 10.3389/fneur.2023.1086465.
[42]
SABA, LAI L, LUCATELLI P, et al. Association between carotid artery plaque inflammation and brain MRI[J]. J De Neuroradiol, 2020, 47(3): 203-209. DOI: 10.1016/j.neurad.2018.10.004.
[43]
PAPINI G D, LEO G D, BANDIRALI M, et al. Is carotid plaque contrast enhancement on MRI predictive for cerebral or cardiovascular events? A prospective cohort study[J]. J Comput Assist Tomogr, 2017, 41(2): 321-326. DOI: 10.1097/RCT.0000000000000506.
[44]
HAN N, HU W J, MA Y R, et al. A clinical-radiomics combined model based on carotid atherosclerotic plaque for prediction of ischemic stroke[J/OL]. Front Neurol, 2024, 15: 1343423 [2024-05-25]. https://www.ncbi.nlm.nih.gov/pubmed/38550341. DOI: 10.3389/fneur.2024.1343423.
[45]
JANSEN I, CRIELAARD H, WISSING T, et al. A tissue-engineered model of the atherosclerotic plaque cap: toward understanding the role of microcalcifications in plaque rupture[J/OL]. APL Bioeng, 2023, 7(3): 036120 [2024-05-24]. https://www.ncbi.nlm.nih.gov/pubmed/37786532. DOI: 10.1063/5.0168087.
[46]
KOTSUGI M, NAKAGAWA I, SASAKI H, et al. Thin calcification predicts lipid component in carotid plaque-relationship between lipid distribution and thin calcification[J/OL]. World Neurosurg, 2024, 183: e715-e721 [2024-05-23]. https://www.ncbi.nlm.nih.gov/pubmed/38191057. DOI: 10.1016/j.wneu.2024.01.011.
[47]
BENITEZ J, FONTANAROSA D, WANG J Q, et al. Evaluating the impact of calcification on plaque vulnerability from the aspect of mechanical interaction between blood flow and artery based on MRI[J]. Ann Biomed Eng, 2021, 49(4): 1169-1182. DOI: 10.1007/s10439-020-02655-1.
[48]
KASHIWAZAKI D, YAMAMOTO S, HORI E, et al. Thin calcification (<2 mm) can highly predict intraplaque hemorrhage in carotid plaque: the clinical significance of calcification types[J]. Acta Neurochir, 2022, 164(6): 1635-1643. DOI: 10.1007/s00701-022-05205-x.
[49]
LIN R L, CHEN S, LIU G F, et al. Association between carotid atherosclerotic plaque calcification and intraplaque hemorrhage: a magnetic resonance imaging study[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1228-1233. DOI: 10.1161/ATVBAHA.116.308360.
[50]
SABA, NARDI V, CAU R, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging[J]. Stroke, 2022, 53(1): 290-297. DOI: 10.1161/STROKEAHA.121.035692.
[51]
TANG Y X, ZHANG J P, LIU W Z, et al. Analysis of carotid vulnerable plaque MRI high-risk features and clinical risk factors associated with concomitant acute cerebral infarction[J/OL]. BMC Cardiovasc Disord, 2023, 23(1): 173 [2024-05-14]. https://www.ncbi.nlm.nih.gov/pubmed/36997869. DOI: 10.1186/s12872-023-03199-7.
[52]
XIN R J, YANG D D, XU H M, et al. Comparing symptomatic and asymptomatic carotid artery atherosclerosis in patients with bilateral carotid vulnerable plaques using magnetic resonance imaging[J]. Angiology, 2022, 73(2): 104-111. DOI: 10.1177/00033197211012531.
[53]
LU M M, ZHANG L C, YUAN F, et al. Comparison of carotid atherosclerotic plaque characteristics between symptomatic patients with transient ischemic attack and stroke using high-resolution magnetic resonance imaging[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 190 [2024-03-20]. https://www.ncbi.nlm.nih.gov/pubmed/35448952. DOI: 10.1186/s12872-022-02624-7.
[54]
KAMTCHUM-TATUENE J, WILMAN A, SAQQUR M, et al. Carotid plaque with high-risk features in embolic stroke of undetermined source: systematic review and meta-analysis[J]. Stroke, 2020, 51(1): 311-314. DOI: 10.1161/STROKEAHA.119.027272.
[55]
SENERS P, BARON J C. Revisiting 'progressive stroke': incidence, predictors, pathophysiology, and management of unexplained early neurological deterioration following acute ischemic stroke[J]. J Neurol, 2018, 265(1): 216-225. DOI: 10.1007/s00415-017-8490-3.
[56]
YU Q L, MAO X C, FU Z H, et al. Fasting blood glucose as a predictor of progressive infarction in men with acute ischemic stroke[J/OL]. J Int Med Res, 2022, 50(10): 3000605221132416 [2024-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/36271599. DOI: 10.1177/03000605221132416.
[57]
HE Y T, YANG M J, CHE S X, et al. Effect of morning blood pressure peak on early progressive ischemic stroke: a prospective clinical study[J/OL]. Clin Neurol Neurosurg, 2019, 184: 105420 [2024-02-02]. https://www.ncbi.nlm.nih.gov/pubmed/31310922. DOI: 10.1016/j.clineuro.2019.105420.
[58]
CHEN J, YAO Y, ZHU R X. Risk factors for progressive ischemic stroke and the value of microemboli in predicting stroke progression[J]. J Int Neurol Neurosurg, 2019, 46(6): 614-617. DOI: 10.16636/j.cnki.jinn.2019.06.006.
[59]
CHEN B, SONG Y, DING X M, et al. Correlation between unstable plaque in extracranial carotid artery and progressive cerebral infarction[J]. Chin J Pract Nerv Dis, 2016, 19(14): 69-70. DOI: 10.3969/j.issn.1673-5110.2016.14.042.
[60]
CHE F L, LIU Y F, GONG X P, et al. Extracranial carotid plaque hemorrhage is independently associated with poor 3-month functional outcome after acute ischemic stroke-a prospective cohort study[J/OL]. Front Neurol, 2021, 12: 780436 [2024-05-03]. https://www.ncbi.nlm.nih.gov/pubmed/34970212. DOI: 10.3389/fneur.2021.780436.

PREV Research progress of artificial intelligence in pituitary tumor magnetic resonance imaging
NEXT Advances in magnetic resonance imaging research on cardiotoxicity of immune checkpoint inhibitors
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn