Share:
Share this content in WeChat
X
Review
Advances in magnetic resonance imaging research on cardiotoxicity of immune checkpoint inhibitors
LUO Shuying  YU Hong  LI Bangguo 

Cite this article as: LUO S Y, YU H, LI B G. Advances in magnetic resonance imaging research on cardiotoxicity of immune checkpoint inhibitors[J]. Chin J Magn Reson Imaging, 2024, 15(9): 172-177. DOI:10.12015/issn.1674-8034.2024.09.030.


[Abstract] Cardiotoxicity is a potential complication of immune checkpoint inhibitors (ICIs) in the treatment of malignant tumors. Although the incidence of ICIs-related cardiotoxicity is low, it can threaten the lives of patients. Cardiac magnetic resonance imaging (CMR) imaging has the advantages of better soft tissue resolution and multi-functional, multi-parameter imaging. Techniques such as cine sequences, late gadolinium enhancement (LGE), T1 mapping, T2 mapping, and feature tracking (FT) play a crucial role in the comprehensive assessment and early diagnosis of ICIs-related cardiotoxicity. This article summarizes the quantitative and qualitative analysis of ICIs-related cardiotoxicity through these techniques, and provides new methods and ideas for early clinical diagnosis of ICIs-related cardiotoxicity, so as to ensure the safety of patients during treatment, thereby improving the quality of life of patients, and is expected to provide reference direction for future research.
[Keywords] cardiac magnetic resonance;immune checkpoint inhibitors;cardiotoxicity;magnetic resonance imaging;T1 mapping;feature tracking

LUO Shuying   YU Hong   LI Bangguo*  

Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi 563003, China

Corresponding author: LI B G, E-mail: lbg2015@163.com

Conflicts of interest   None.

Received  2024-05-20
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.030
Cite this article as: LUO S Y, YU H, LI B G. Advances in magnetic resonance imaging research on cardiotoxicity of immune checkpoint inhibitors[J]. Chin J Magn Reson Imaging, 2024, 15(9): 172-177. DOI:10.12015/issn.1674-8034.2024.09.030.

[1]
CARLINO M S, LARKIN J, LONG G V. Immune checkpoint inhibitors in melanoma[J]. Lancet, 2021, 398(10304): 1002-1014. DOI: 10.1016/S0140-6736(21)01206-X.
[2]
HIMMEL M E, SAIBIL S D, SALTMAN A P. Immune checkpoint inhibitors in cancer immunotherapy[J/OL]. CMAJ, 2020, 192(24): E651 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/32540906/. DOI: 10.1503/cmaj.191231.
[3]
AXELROD M L, MEIJERS W C, SCREEVER E M, et al. T cells specific for α-myosin drive immunotherapy-related myocarditis[J]. Nature, 2022, 611(7937): 818-826. DOI: 10.1038/s41586-022-05432-3.
[4]
ADAMS S, LOI S, TOPPMEYER D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study[J]. Ann Oncol, 2019, 30(3): 405-411. DOI: 10.1093/annonc/mdy518.
[5]
MARCOS RUBIO A, EVERAERT C, VAN DAMME E, et al. Circulating immune cell dynamics as outcome predictors for immunotherapy in non-small cell lung cancer[J/OL]. J Immunother Cancer, 2023, 11(8): e007023 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/37536935/. DOI: 10.1136/jitc-2023-007023.
[6]
LYON A R, YOUSAF N, BATTISTI N M L, et al. Immune checkpoint inhibitors and cardiovascular toxicity[J/OL]. Lancet Oncol, 2018, 19(9): e447-e458 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/30191849/. DOI: 10.1016/S1470-2045(18)30457-1.
[7]
MOSLEHI J, LICHTMAN A H, SHARPE A H, et al. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms[J/OL]. J Clin Invest, 2021, 131(5): e145186 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/33645548/. DOI: 10.1172/JCI145186.
[8]
ESCUDIER M, CAUTELA J, MALISSEN N, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity[J]. Circulation, 2017, 136(21): 2085-2087. DOI: 10.1161/CIRCULATIONAHA.117.030571.
[9]
Chinese Anti-Cancer Association Integrated Cancer Cardiology Branch, Chinese Medical Association Cardiology Branch Oncology Cardiology Group, Chinese Medical Association Cardiovascular Physicians Branch Oncology Cardiology Professional Committee, et al. Chinese expert consensus on the surveillance and management of immune checkpoint inhibitor-related myocarditis (2020 version)[J]. Chin J Clin Oncol, 2020, 47(20): 1027-1038. DOI: 10.3969/j.issn.1000-8179.2020.20.148.
[10]
KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
[11]
SONG Y, GUO Y K, XU H Y, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imag, 2021, 12(11): 109-112, 121. DOI: 10.12015/issn.1674-8034.2021.11.027.
[12]
FRIEDRICH M G. Immune checkpoint inhibitor cardiotoxicity: what can we learn from real life data on CMR as a diagnostic tool?[J]. Eur Heart J, 2020, 41(18): 1744-1746. DOI: 10.1093/eurheartj/ehaa136.
[13]
ZHANG L L, AWADALLA M, MAHMOOD S S, et al. Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis[J]. Eur Heart J, 2020, 41(18): 1733-1743. DOI: 10.1093/eurheartj/ehaa051.
[14]
THAVENDIRANATHAN P, ZHANG L L, ZAFAR A, et al. Myocardial T1 and T2 mapping by magnetic resonance in PatientsWithImmune checkpoint inhibitor-associated myocarditis[J]. J Am Coll Cardiol, 2021, 77(12): 1503-1516. DOI: 10.1016/j.jacc.2021.01.050.
[15]
RAJPAL S, TONG M S, BORCHERS J, et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection[J]. JAMA Cardiol, 2021, 6(1): 116-118. DOI: 10.1001/jamacardio.2020.4916.
[16]
POSTOW M A, SIDLOW R, HELLMANN M D. Immune-related adverse events associated with immune checkpoint blockade[J]. N Engl J Med, 2018, 378(2): 158-168. DOI: 10.1056/NEJMra1703481.
[17]
HEINZERLING L, OTT P A, HODI F S, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy[J/OL]. J Immunother Cancer, 2016, 4: 50 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/27532025/. DOI: 10.1186/s40425-016-0152-y.
[18]
ZHOU C C, WANG J, BU H, et al. Chinese Experts Consensus on Immune Checkpoint Inhibitors for Non-small Cell Lung Cancer (2019 version)[J]. Zhongguo Fei Ai Za Zhi, 2020, 23(2): 65-76. DOI: 10.3779/j.issn.1009-3419.2020.02.01.
[19]
VESELY M D, KERSHAW M H, SCHREIBER R D, et al. Natural innate and adaptive immunity to cancer[J/OL]. Annu Rev Immunol, 2011, 29: 235-271 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/21219185/. DOI: 10.1146/annurev-immunol-031210-101324.
[20]
TANG Q, CHEN Y, LI X J, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers[J/OL]. Front Immunol, 2022, 13: 964442 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/36177034/. DOI: 10.3389/fimmu.2022.964442.
[21]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[22]
BURR M L, SPARBIER C E, CHAN K L, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer[J/OL]. Cancer Cell, 2019, 36(4): 385-401.e8 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/31564637/. DOI: 10.1016/j.ccell.2019.08.008.
[23]
RECK M, RODRÍGUEZ-ABREU D, ROBINSON A G, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19): 1823-1833. DOI: 10.1056/NEJMoa1606774.
[24]
PAZ-ARES L, LUFT A, VICENTE D, et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2018, 379(21): 2040-2051. DOI: 10.1056/NEJMoa1810865.
[25]
HOWLADER N, FORJAZ G, MOORADIAN M J, et al. The effect of advances in lung-cancer treatment on population mortality[J]. N Engl J Med, 2020, 383(7): 640-649. DOI: 10.1056/NEJMoa1916623.
[26]
MATZEN E, BARTELS L E, LØGSTRUP B, et al. Immune checkpoint inhibitor-induced myocarditis in cancer patients: a case report and review of reported cases[J/OL]. Cardio-oncology, 2021, 7(1): 27 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/34365980/. DOI: 10.1186/s40959-021-00114-x.
[27]
PATRINELY J R, JOHNSON R, LAWLESS A R, et al. Chronic immune-related adverse events following adjuvant anti-PD-1 therapy for high-risk resected melanoma[J]. JAMA Oncol, 2021, 7(5): 744-748. DOI: 10.1001/jamaoncol.2021.0051.
[28]
PLANES-LAINE G, ROCHIGNEUX P, BERTUCCI F, et al. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging. A literature review[J/OL]. Cancers, 2019, 11(7): 1033 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/31336685/. DOI: 10.3390/cancers11071033.
[29]
SCHMID P, CORTES J, DENT R, et al. VP7-2021: keynote-522: phase Ⅲ study of neoadjuvant pembrolizumab+ chemotherapy vs. placebo+ chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC[J]. Ann Oncol, 2021, 32(9): 1198-1200. DOI: 10.1016/j.annonc.2021.06.014.
[30]
WANG D Y, SALEM J E, COHEN J V, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. JAMA Oncol, 2018, 4(12): 1721-1728. DOI: 10.1001/jamaoncol.2018.3923.
[31]
LEINER T, BOGAERT J, FRIEDRICH M G, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/33161900/. DOI: 10.1186/s12968-020-00682-4.
[32]
HARRIES I, LIANG K T, WILLIAMS M, et al. Magnetic resonance imaging to DetectCardiovascular effects of CancerTherapy[J]. JACC CardioOncology, 2020, 2(2): 270-292. DOI: 10.1016/j.jaccao.2020.04.011.
[33]
ARCARI L, TINI G, CAMASTRA G, et al. Cardiac magnetic resonance imaging in immune check-point inhibitor myocarditis: a systematic review[J/OL]. J Imaging, 2022, 8(4): 99 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/35448226/. DOI: 10.3390/jimaging8040099.
[34]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular magnetic resonance in NonischemicMyocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[35]
FARON A, ISAAK A, MESROPYAN N, et al. Cardiac MRI depicts immune checkpoint inhibitor-induced myocarditis: a prospective study[J]. Radiology, 2021, 301(3): 602-609. DOI: 10.1148/radiol.2021210814.
[36]
ZHAO S H, YUN H, CHEN C Z, et al. Applying quantitative CMR parameters for detecting myocardial lesion in immune checkpoint inhibitors-associated myocarditis[J/OL]. Eur J Radiol, 2022, 156: 110558 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/36265221/. DOI: 10.1016/j.ejrad.2022.110558.
[37]
SHANG Y N, ZHANG X C, LENG W, et al. Assessment of diabetic cardiomyopathy by cardiovascular magnetic resonance T1 mapping: correlation with left-ventricular diastolic dysfunction and diabetic duration[J/OL]. J Diabetes Res, 2017, 2017: 9584278 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/28791311/. DOI: 10.1155/2017/9584278.
[38]
CADOUR F, CAUTELA J, RAPACCHI S, et al. Cardiac MRI features and prognostic value in immune checkpoint inhibitor-induced myocarditis[J]. Radiology, 2022, 303(3): 512-521. DOI: 10.1148/radiol.211765.
[39]
GALLEGOS C, ROTTMANN D, NGUYEN V Q, et al. Myocarditis with checkpoint inhibitor immunotherapy: case report of late gadolinium enhancement on cardiac magnetic resonance with pathology correlate[J/OL]. Eur Heart J Case Rep, 2019, 3(1): yty149 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/31020225/. DOI: 10.1093/ehjcr/yty149.
[40]
ARCARI L, HINOJAR R, ENGEL J, et al. Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions - Comparison of uremic, hypertensive and hypertrophic cardiomyopathy[J/OL]. Int J Cardiol, 2020, 306: 102-108 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/32169347/. DOI: 10.1016/j.ijcard.2020.03.002.
[41]
ZHANG C, CHEN Z L, QIN S, et al. Incidence of adverse cardiovascular events associated with immune checkpoint inhibitors and risk factors for left ventricular dysfunction: a single-center prospective clinical study[J/OL]. Front Cardiovasc Med, 2023, 10: 1052699 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/36755798/. DOI: 10.3389/fcvm.2023.1052699.
[42]
HIGGINS A Y, ARBUNE A, SOUFER A, et al. Left ventricular myocardial strain and tissue characterization by cardiac magnetic resonance imaging in immune checkpoint inhibitor associated cardiotoxicity[J/OL]. PLoS One, 2021, 16(2): e0246764 [2024-05-19]. https://pubmed.ncbi.nlm.nih.gov/33606757/. DOI: 10.1371/journal.pone.0246764.
[43]
ZHANG H Y, ZHU L Y, ZHAO S H, et al. Research progresses of cardiac magnetic resonance in 2022[J]. Chin J Magn Reson Imag, 2023, 14(6): 133-138, 144. DOI: 10.12015/issn.1674-8034.2023.06.024.
[44]
O'QUINN R, FERRARI V A, DALY R, et al. Cardiac magnetic resonance in cardio-oncology: advantages, importance of expediency, and considerations to navigate pre-authorization[J]. JACC CardioOncol, 2021, 3(2): 191-200. DOI: 10.1016/j.jaccao.2021.04.011.
[45]
ZHAO S H, YUN H, CHEN C Z, et al. The prognostic value of global myocardium strain by CMR-feature tracking in immune checkpoint inhibitor-associated myocarditis[J]. Eur Radiol, 2022, 32(11): 7657-7667. DOI: 10.1007/s00330-022-08844-x.
[46]
LYON A R, LÓPEZ-FERNÁNDEZ T, COUCH L S, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS)[J]. Eur Heart J, 2022, 43(41): 4229-4361. DOI: 10.1093/eurheartj/ehac244.
[47]
LI Z, ZHAO R, WANG C, et al. Cardiac magnetic resonance-based layer-specific strain in immune checkpoint inhibitor-associated myocarditis[J]. ESC Heart Fail, 2024, 11(2): 1061-1075. DOI: 10.1002/ehf2.14664.
[48]
VELUSAMY R, NOLAN M, MURPHY A, et al. Screening for coronary artery disease inCancer survivors[J]. JACC CardioOncology, 2023, 5(1): 22-38. DOI: 10.1016/j.jaccao.2022.12.007.
[49]
DROBNI Z D, ALVI R M, TARON J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque[J]. Circulation, 2020, 142(24): 2299-2311. DOI: 10.1161/CIRCULATIONAHA.120.049981.
[50]
YARAHMADI P, FOROUZANNIA S M, FOROUZANNIA S A, et al. Prognostic value of qualitative and quantitative stress CMR in patients WithKnown or suspected CAD[J]. JACC Cardiovasc Imaging, 2024, 17(3): 248-265. DOI: 10.1016/j.jcmg.2023.05.025.

PREV Study progress of MRI on vulnerable plaques in carotid arteries
NEXT Progress in diagnosis and prognosis of noncompaction cardiomyopathy with multimodal cardiac magnetic resonance
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn