Share:
Share this content in WeChat
X
Review
Progress in diagnosis and prognosis of noncompaction cardiomyopathy with multimodal cardiac magnetic resonance
LI Jiaqi  CAO Jinfeng  ZHU Lingcheng  LIU Yangyingqiu  YUAN Sen  LUO Xin 

Cite this article as: LI J Q, CAO J F, ZHU L C, et al. Progress in diagnosis and prognosis of noncompaction cardiomyopathy with multimodal cardiac magnetic resonance[J]. Chin J Magn Reson Imaging, 2024, 15(9): 178-182. DOI:10.12015/issn.1674-8034.2024.09.031.


[Abstract] Noncompaction cardiomyopathy (NCCM) is a genetically diverse condition that has seen a rise in prevalence in recent times, yet its diagnosis and prognosis evaluation pose significant clinical hurdles. Cardiac magnetic resonance (CMR) imaging can provide comprehensive information about myocardial structure, function, viability, and tissue quantification, offering unique advantages. This review focused on NCCM-related CMR techniques, and summarized the application progress of conventional CMR techniques and new CMR techniques in the diagnosis and prognosis assessment of NCCM. The purpose of this study is to investigate the pathogenesis of NCCM and improve the early detection rate, so as to effectively guide clinical treatment and improve the prognosis of patients. At the same time, it is hoped that by summarizing the previous research work, it can provide reference for the research of new technology in the disease.
[Keywords] noncompaction cardiomyopathy;cardiac magnetic resonance;multimodal magnetic resonance imaging;diagnose;evaluation of prognosis

LI Jiaqi1   CAO Jinfeng2   ZHU Lingcheng2   LIU Yangyingqiu2   YUAN Sen2   LUO Xin2*  

1 School of Medical Imaging Binzhou Medical University, Yantai 264003, China

2 Department of Radiology, Zibo Central Hospital, Zibo 255000, China

Corresponding author: LUO X, E-mail: asd0601@126.com

Conflicts of interest   None.

Received  2024-05-26
Accepted  2024-08-12
DOI: 10.12015/issn.1674-8034.2024.09.031
Cite this article as: LI J Q, CAO J F, ZHU L C, et al. Progress in diagnosis and prognosis of noncompaction cardiomyopathy with multimodal cardiac magnetic resonance[J]. Chin J Magn Reson Imaging, 2024, 15(9): 178-182. DOI:10.12015/issn.1674-8034.2024.09.031.

[1]
TOWBIN J A, LORTS A, JEFFERIES J L. Left ventricular non-compaction cardiomyopathy[J]. Lancet, 2015, 386(9995): 813-825. DOI: 10.1016/S0140-6736(14)61282-4.
[2]
ROJANASOPONDIST P, NESHEIWAT L, PIOMBO S, et al. Genetic basis of left ventricular noncompaction[J/OL]. Circ Genom Precis Med, 2022, 15(3): e003517 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/35549379/. DOI: 10.1161/CIRCGEN.121.003517.
[3]
O'SULLIVAN J W, RHEE J, HSU D, et al. Multimodality imaging for risk assessment of inherited cardiomyopathies[J/OL]. Curr Cardiovasc Risk Rep, 2020, 14(5): 5 [2024-05-25]. https://link.springer.com/article/10.1007/s12170-020-0639-4. DOI: 10.1007/s12170-020-0639-4.
[4]
ARBELO E, PROTONOTARIOS A, GIMENO J R, et al. 2023 ESC Guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37): 3503-3626. DOI: 10.1093/eurheartj/ehad194.
[5]
HOTTA V T, TENDOLO S C, RODRIGUES A C T, et al. Limitations in the diagnosis of noncompaction cardiomyopathy by echocardiography[J]. Arq Bras Cardiol, 2017, 109(5): 483-488. DOI: 10.5935/abc.20170152.
[6]
LUO Q H, LI M J, WANG X. Advances in pathogenesis, diagnosis and treatment of noncompaction of ventricular myocardium[J]. Med Recapitul, 2019, 25(17): 3422-3427. DOI: 10.3969/j.issn.1006-2084.2019.17.018.
[7]
XU Y F, LIU X X, LI H L. Improvement of the diagnosis of left ventricular noncompaction cardiomyopathy after analyzing both advantages and disadvantages of echocardiography and CMRI[J]. Prog Cardiovasc Dis, 2018, 61(5/6): 491-493. DOI: 10.1016/j.pcad.2018.05.006.
[8]
WANG J X, YANG K, ZHAO S H. The interpretation of 2020 SCMR position paper on clinical indications for cardiovascular magnetic resonance[J]. Chin J Magn Reson Imag, 2021, 12(5): 85-89. DOI: 10.12015/issn.1674-8034.2021.05.019.
[9]
Chinese Society of Cardiology, Chinese Medical Association, Chinese College of Cardiovascular Physician, et al. Chinese guidelines for the diagnosis and treatment of heart failure 2024[J]. Chin J Cardiol, 2024, 52(3): 235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.
[10]
WU J, YANG C H, ZHANG X, et al. Diagnostic value of black blood technique of cardiac magnetic resonance imaging in common myocardial diseases[J]. Chin J Integr Med Cardio Cerebrovasc Dis, 2016, 14(22): 2715-2717. DOI: 10.3969/j.issn.1672-1349.2016.22.045.
[11]
TANG X Y. Diagnostic value of black blood technique in cardiac magnetic resonance imaging for common myocardial diseases[J]. J Imag Res Med Appl, 2018, 2(20): 78-79. DOI: 10.3969/j.issn.2096-3807.2018.20.047.
[12]
BAI W J, LI X S, LI Z L, et al. Comparison research in children myocardium with two kinds of T1-weighted black blood sequences of cardiac magnetic resonance imaging[J]. China Med Devices, 2020, 35(10): 59-62. DOI: 10.3969/j.issn.1674-1633.2020.10.011.
[13]
China Committee of International Society of Cardiovascular Magnetic Resonance, China Association for the Promotion of International Exchanges in Healthcare, Cardiovascular magnetic Resonance Branch. Expert consensus on cardiovasular magnetic resonance imaging of China[J]. Chin J Med Imag Technol, 2019, 35(2): 161-169. DOI: 10.13929/j.1003-3289.201810056.
[14]
SONG L S. Research progress of cardiac magnetic resonance imaging in diagnosis and risk assessment of left ventricular noncompaction[J]. J Clin Radiol, 2018, 37(1): 166-169.
[15]
SRIVASTAVA S, YAVARI M, AL-ABCHA A, et al. Ventricular non-compaction review[J]. Heart Fail Rev, 2022, 27(4): 1063-1076. DOI: 10.1007/s10741-021-10128-3.
[16]
GREBUR K, MESTER B, FEKETE B A, et al. Genetic, clinical and imaging implications of a noncompaction phenotype population with preserved ejection fraction[J/OL]. Front Cardiovasc Med, 2024, 11: 1337378 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/38380180/. DOI: 10.3389/fcvm.2024.1337378.
[17]
CRUZ G, HAMMERNIK K, KUESTNER T, et al. Single-heartbeat cardiac cine imaging via jointly regularized nonrigid motion-corrected reconstruction[J/OL]. NMR Biomed, 2023, 36(9): e4942 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/36999225/. DOI: 10.1002/nbm.4942.
[18]
JENSEN B, PETERSEN S E, COOLEN B F. Myocardial perfusion in excessively trabeculated hearts: insights from imaging and histological studies[J]. J Cardiol, 2023, 81(6): 499-507. DOI: 10.1016/j.jjcc.2022.11.013.
[19]
LI Y, YANG M F, GAO X J, et al. Myocardial perfusion abnormalities in patients with isolated left ventricular noncompaction[J]. Chin J Nucl Med Mol Imag, 2014, 34(5): 354-357. DOI: 10.3760/cma.j.issn.2095-2848.2014.05.004.
[20]
CERAR A, JAKLIC M, FRLJAK S, et al. Impairment of myocardial perfusion correlates with heart failure severity in patients with non-compaction cardiomyopathy[J]. ESC Heart Fail, 2020, 7(3): 1161-1167. DOI: 10.1002/ehf2.12631.
[21]
HUANG W, SUN R, LIU W B, et al. Prognostic value of late gadolinium enhancement in left ventricular noncompaction: a multicenter study[J/OL]. Diagnostics, 2022, 12(10): 2457 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/36292149/. DOI: 10.3390/diagnostics12102457.
[22]
ASMAKUTLU O, ALIS D, TOPEL C, et al. Late gadolinium enhancement on CMRI in patients with LV noncompaction: an overestimated phenomenon?[J/OL]. Clin Imaging, 2020, 66: 121-126 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/32480266/. DOI: 10.1016/j.clinimag.2020.04.024.
[23]
GRIGORATOS C, BARISON A, IVANOV A, et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in LeftVentricular noncompaction[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 1): 2141-2151. DOI: 10.1016/j.jcmg.2018.12.029.
[24]
YANG Y, SHI Z W, WANG Y C, et al. Value of cardiac magnetic resonance in the diagnosis of left atrial/left atrial appendage thrombosis in patients with atrial fibrillation: a systematic review and Meta-analysis[J]. Chin J Magn Reson Imag, 2024, 15(1): 106-112. DOI: 10.12015/issn.1674-8034.2024.01.017.
[25]
CHANG P, XIAO J Y, HU Z H, et al. Imaging of left heart intracardiac thrombus: clinical needs, current imaging, and emerging cardiac magnetic resonance techniques[J/OL]. Ther Adv Cardiovasc Dis, 2022, 16: 17539447221107737 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/35762763/. DOI: 10.1177/17539447221107737.
[26]
GASPAR A S, MALTÊS S, MARQUES H, et al. Myocardial T1 mapping with magnetic resonance imaging - a useful tool to understand the diseased heart[J]. Portuguese J Cardiol Off J Portuguese Soc Cardiol, 2022, 41(1): 61-69. DOI: 10.1016/j.repc.2021.04.005.
[27]
PALMISANO A, BENEDETTI G, FALETTI R, et al. Early T1 myocardial MRI mapping: value in detecting myocardial hyperemia in acute myocarditis[J]. Radiology, 2020, 295(2): 316-325. DOI: 10.1148/radiol.2020191623.
[28]
LIU Y M, ZHU J F, CHEN M, et al. 3.0T cardiac magnetic resonance quantification of native T1 and myocardial extracellular volume for the diagnosis of late gadolinium enhancement-negative cardiac amyloidosis[J/OL]. Ann Transl Med, 2022, 10(14): 794 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/35965812/. DOI: 10.21037/atm-22-3251.
[29]
ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: underlying concepts and technical considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11Pt 2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[30]
ARAUJO-FILHO J A B, ASSUNCAO A N, DE MELO M D T, et al. Myocardial T1 mapping and extracellular volume quantification in patients with left ventricular non-compaction cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(8): 888-895. DOI: 10.1093/ehjci/jey022.
[31]
ZHOU H M, LIN X, FANG L G, et al. Characterization of compacted myocardial abnormalities by cardiac magnetic resonance with native T1 mapping in left ventricular non-compaction patients - A comparison with late gadolinium enhancement[J]. Circ J, 2016, 80(5): 1210-1216. DOI: 10.1253/circj.CJ-15-1269.
[32]
LIU Y H, LI W, OUYANG L N, et al. Preliminary study of CMR tissue feature tracking technology on left ventricular function in patients with hypertrophic cardiomyopathy with ejection fraction preservation[J]. Chin J Magn Reson Imag, 2022, 13(1): 31-36. DOI: 10.12015/issn.1674-8034.2022.01.007.
[33]
ZHENG T, MA X H, LI S H, et al. Value of cardiac magnetic resonance fractal analysis combined with myocardial strain in discriminating isolated left ventricular noncompaction and dilated cardiomyopathy[J]. J Magn Reson Imaging, 2019, 50(1): 153-163. DOI: 10.1002/jmri.26616.
[34]
PU C L, HU X H, YE Y, et al. Evaluation of myocardial deformation pattern of left ventricular noncompaction by cardiac magnetic resonance tissue tracking[J]. Kardiol Pol, 2020, 78(1): 71-74. DOI: 10.33963/KP.15133.
[35]
ZHANG J M, JIANG M C, ZHENG C, et al. Evaluation of isolated left ventricular noncompaction using cardiac magnetic resonance tissue tracking in global, regional and layer-specific strains[J/OL]. Sci Rep, 2021, 11(1): 7183 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/33785853/. DOI: 10.1038/s41598-021-86695-0.
[36]
TAO Q, YAN W J, WANG Y Y, et al. Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study[J]. Radiology, 2019, 290(1): 81-88. DOI: 10.1148/radiol.2018180513.
[37]
BARTOLI A, FOURNEL J, BENTATOU Z, et al. Deep learning-based automated segmentation of left ventricular trabeculations and myocardium on cardiac MR images: a feasibility study[J/OL]. Radiol Artif Intell, 2020, 3(1): e200021 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/33937851/. DOI: 10.1148/ryai.2020200021.
[38]
RODRÍGUEZ-DE-VERA J M, BERNABÉ G, GARCÍA J M, et al. Left ventricular non-compaction cardiomyopathy automatic diagnosis using a deep learning approach[J/OL]. Comput Methods Programs Biomed, 2022, 214: 106548 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/34861618/. DOI: 10.1016/j.cmpb.2021.106548.
[39]
LI S, WANG X C. Clinical advancements in the application of compressed sensing techniques in magnetic resonance imaging[J]. Chin J Magn Reson Imag, 2023, 14(12): 198-202. DOI: 10.12015/issn.1674-8034.2023.12.036.
[40]
LIN L, LI Y Y, WANG J, et al. Free-breathing cardiac cine MRI with compressed sensing real-time imaging and retrospective motion correction: clinical feasibility and validation[J]. Eur Radiol, 2023, 33(4): 2289-2300. DOI: 10.1007/s00330-022-09210-7.
[41]
LI Y Y, LIN L, WANG J, et al. Cardiac cine with compressed sensing real-time imaging and retrospective motion correction for free-breathing assessment of left ventricular function and strain in clinical practice[J]. Quant Imaging Med Surg, 2023, 13(4): 2262-2277. DOI: 10.21037/qims-22-596.
[42]
LONGÈRE B, ABASSEBAY N, GKIZAS C, et al. A new compressed sensing cine cardiac MRI sequence with free-breathing real-time acquisition and fully automated motion-correction: a comprehensive evaluation[J]. Diagn Interv Imaging, 2023, 104(11): 538-546. DOI: 10.1016/j.diii.2023.06.005.
[43]
YAO K X, DENG W, HE R, et al. Comparing strain assessment in compressed sensing and conventional cine MRI[J]. J Imaging Inform Med, 2024, 37(4): 1933-1943. DOI: 10.1007/s10278-024-01040-x.
[44]
ECK B L, FLAMM S D, KWON D H, et al. Cardiac magnetic resonance fingerprinting: trends in technical development and potential clinical applications[J/OL]. Prog Nucl Magn Reson Spectrosc, 2021, 122: 11-22 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/33632415/. DOI: 10.1016/j.pnmrs.2020.10.001.
[45]
ZHANG J, MA Y, SUN J, et al. Research progress of cardiac MR diffusion tensor imaging[J]. Chin J Radiol, 2022, 56(11): 1280-1284. DOI: 10.3760/cma.j.cn112149-20211228-01157.
[46]
JIA X, ZHAO S H. 4D Flow cardiovascular magnetic resonance consensus statement of SCMR: 2023 update[J]. Chin J Magn Reson Imag, 2024, 15(3): 1-6. DOI: 10.12015/issn.1674-8034.2024.03.001.
[47]
RIZK J. 4D flow MRI applications in congenital heart disease[J]. Eur Radiol, 2021, 31(2): 1160-1174. DOI: 10.1007/s00330-020-07210-z.
[48]
DAS A, KELLY C, TEH I, et al. Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: the relationship between microvascular dysfunction and microstructural changes[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(3): 352-362. DOI: 10.1093/ehjci/jeab210.
[49]
ECK B L, SEIBERLICH N, FLAMM S D, et al. Characterization of cardiac amyloidosis using cardiac magnetic resonance fingerprinting[J/OL]. Int J Cardiol, 2022, 351: 107-110 [2024-05-25]. https://pubmed.ncbi.nlm.nih.gov/34963645/. DOI: 10.1016/j.ijcard.2021.12.038.
[50]
HAN P L, JIANG Z K, GU R, et al. Prognostic prediction of left ventricular myocardial noncompaction using machine learning and cardiac magnetic resonance radiomics[J]. Quant Imaging Med Surg, 2023, 13(10): 6468-6481. DOI: 10.21037/qims-23-372.

PREV Advances in magnetic resonance imaging research on cardiotoxicity of immune checkpoint inhibitors
NEXT Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn