Share:
Share this content in WeChat
X
Review
Application of radiomics based on different magnetic resonance imaging techniques in the differential diagnosis of breast lesions
YANG Ke  MIAO Chongchang 

Cite this article as: YANG K, MIAO C C. Application of radiomics based on different magnetic resonance imaging techniques in the differential diagnosis of breast lesions[J]. Chin J Magn Reson Imaging, 2024, 15(9): 189-193, 200. DOI:10.12015/issn.1674-8034.2024.09.033.


[Abstract] Breast cancer is the most common malignant tumour in women and ranks first in the incidence of female tumours in China. At present, breast magnetic resonance imaging has been widely used in breast examination, and has significant advantages over other imaging examinations. Radiomics has been a hot topic of research in the past decade, which can extract imaging features that cannot be recognized by the naked eye and provide qualitative diagnosis for breast lesions. MRI-based radiomics is of significant value in the differentiation of benign and malignant breast lesions. This review focuses on the application of radiomics based on different MRI techniques in breast lesions in detail, reviewing the research progress of radiomics based on different MRI techniques in recent years, as well as the value of these techniques in the diagnosis and identification of breast lesions. This review can provide effective information for the diagnosis and differentiation of breast lesions, etc., and provide an important reference for the personalised treatment plan of breast lesions, so as to achieve the purpose of precision medicine as early as possible.
[Keywords] breast cancer;magnetic resonance imaging;radiomics;benign and malignant lesions;diagnosis

YANG Ke   MIAO Chongchang*  

Department of Imaging, Lianyungang Clinical Medicine of Nanjing Medical University, Lianyungang 222000, China

Corresponding author: MIAO C C, E-mail: lygzhchmiao@163.com

Conflicts of interest   None.

Received  2024-06-03
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.033
Cite this article as: YANG K, MIAO C C. Application of radiomics based on different magnetic resonance imaging techniques in the differential diagnosis of breast lesions[J]. Chin J Magn Reson Imaging, 2024, 15(9): 189-193, 200. DOI:10.12015/issn.1674-8034.2024.09.033.

[1]
DING R, XIAO Y, MO M, et al. Breast cancer screening and early diagnosis in Chinese women[J]. Cancer Biol Med, 2022, 19(4): 450-467. DOI: 10.20892/j.issn.2095-3941.2021.0676.
[2]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654.
[3]
ZHAN Y, GUAN X, ZHANG Y, et al. Identification of an immune-related gene pair signature in breast cancer[J]. Transl Cancer Res, 2022, 11(6): 1523-1533. DOI: 10.21037/tcr-21-2309.
[4]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[5]
LI Y XU X Y, ZHOU R, et al. The role of combined MRI, ultrasound and X-ray in the diagnosis of breast diseases and selection of breast cancer surgery [J]. Chinese Journal of CT and MRI, 2019, 22(4): 76-79. DOI: 10.3969/j.issn.1672-5131.2024.04.024.
[6]
ARISTOKLI N, POLYCARPOU I, THEMISTOCLEOUS S C, et al. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient's history: a review[J]. Radiography, 2022, 28(3): 848-856. DOI: 10.1016/j.radi.2022.01.006.
[7]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[8]
BOUGIAS H, STOGIANNOS N. Breast MRI: where are we currently standing?[J]. J Med Imaging Radiat Sci, 2022, 53(2): 203-211. DOI: 10.1016/j.jmir.2022.03.072.
[9]
RAHMAT K, MUMIN N A, HAMID M T R, et al. MRI breast: current imaging trends, clinical applications, and future research directions[J]. Curr Med Imaging, 2022, 18(13): 1347-1361. DOI: 10.2174/1573405618666220415130131.
[10]
LEE J, STEINMANN A, DING Y, et al. Radiomics feature robustness as measured using an MRI phantom[J/OL]. Sci Rep, 2021, 11(1): 3973 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/33597610/. DOI: 10.1038/s41598-021-83593-3.
[11]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[12]
IIMA M, HONDA M, SIGMUND E E, et al. Diffusion MRI of the breast: current status and future directions[J]. J Magn Reson Imaging, 2020, 52(1): 70-90. DOI: 10.1002/jmri.26908.
[13]
MEYER H J, WIENKE A, SUROV A. Diffusion-weighted imaging of different breast cancer molecular subtypes: a systematic review and meta-analysis[J]. Breast Care, 2022, 17(1): 47-54. DOI: 10.1159/000514407.
[14]
ZHANG J, LI L C, ZHANG L, et al. Meta-analysis of dynamic contrast enhancement and diffusion-weighted MRI for differentiation of benign from malignant non-mass enhancement breast lesions[J/OL]. Front Oncol, 2024, 14: 1332783 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/38544833/. DOI: 10.3389/fonc.2024.1332783.
[15]
AMORNSIRIPANITCH N, BICKELHAUPT S, SHIN H J, et al. Diffusion-weighted MRI for unenhanced breast cancer screening[J]. Radiology, 2019, 293(3): 504-520. DOI: 10.1148/radiol.2019182789.
[16]
ROTILI A, TRIMBOLI R M, PENCO S, et al. Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection[J]. Breast Cancer Res Treat, 2020, 180(1): 111-120. DOI: 10.1007/s10549-019-05519-y.
[17]
SUN K, JIAO Z C, ZHU H, et al. Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR[J/OL]. J Transl Med, 2021, 19(1): 443 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/34689804/. DOI: 10.1186/s12967-021-03117-5.
[18]
LIU Y L, JIA X X, ZHAO J Q, et al. A machine learning-based unenhanced radiomics approach to distinguishing between benign and malignant breast lesions using T2-weighted and diffusion-weighted MRI[J]. J Magn Reson Imaging, 2024, 60(2): 600-612. DOI: 10.1002/jmri.29111.
[19]
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
[20]
USLU H, ÖNAL T, TOSUN M, et al. Intravoxel incoherent motion magnetic resonance imaging for breast cancer: a comparison with molecular subtypes and histological grades[J/OL]. Magn Reson Imaging, 2021, 78: 35-41 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/33556485/. DOI: 10.1016/j.mri.2021.02.005.
[21]
LIANG J Y, ZENG S H, LI Z P, et al. Intravoxel incoherent motion diffusion-weighted imaging for quantitative differentiation of breast tumors: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 585486 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/33194733/. DOI: 10.3389/fonc.2020.585486.
[22]
XU W J, ZHENG B J, LI H L. Identification of the benignity and malignancy of BI-RADS 4 breast lesions based on a combined quantitative model of dynamic contrast-enhanced MRI and intravoxel incoherent motion[J]. Tomography, 2022, 8(6): 2676-2686. DOI: 10.3390/tomography8060223.
[23]
CHEN S, WANG D, KONG P, et al. Application of intravoxel incoherent motion diffusion-weighted magnetic resonance imaging on the diagnosis of breast cancer[J]. Int J Radiat Res, 2023, 21(4): 827-832. DOI: 10.61186/ijrr.21.4.827.
[24]
MEHTA R, BU Y Y, ZHONG Z, et al. Characterization of breast lesions using multi-parametric diffusion MRI and machine learning[J/OL]. Phys Med Biol, 2023, 68(8) [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/36808921/. DOI: 10.1088/1361-6560/acbde0.
[25]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[26]
WU E X, CHEUNG M M. MR diffusion kurtosis imaging for neural tissue characterization[J]. NMR Biomed, 2010, 23(7): 836-848. DOI: 10.1002/nbm.1506.
[27]
PARK V Y, KIM S G, KIM E K, et al. Diffusional kurtosis imaging for differentiation of additional suspicious lesions on preoperative breast MRI of patients with known breast cancer[J/OL]. Magn Reson Imaging, 2019, 62: 199-208 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/31323316/. DOI: 10.1016/j.mri.2019.07.011.
[28]
ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/jmri.27098.
[29]
WANG Y W, JIN Y M, LI M, et al. Diagnostic performance of mono-exponential DWI versus diffusion kurtosis imaging in breast lesions: a meta-analysis[J/OL]. Medicine, 2022, 101(44): e31574 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/36343063/. DOI: 10.1097/MD.0000000000031574.
[30]
ALBANO D, BRUNO F, AGOSTINI A, et al. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging[J]. Jpn J Radiol, 2022, 40(4): 341-366. DOI: 10.1007/s11604-021-01223-4.
[31]
ZHOU Y M, XU Z J, HUA B, et al. Comparison of quantitative and semi-quantitative breast DCE-MRI in predicting the response of breast cancer to neoadj uvant chemotherapy[J]. J Pract Radiol, 2020, 36(3): 396-400. DOI: 10.3969/j.issn.1002-1671.2020.03.015.
[32]
OHASHI A, KATAOKA M, IIMA M, et al. Comparison of ultrafast dynamic contrast-enhanced (DCE) MRI with conventional DCE MRI in the morphological assessment of malignant breast lesions[J/OL]. Diagnostics, 2023, 13(6): 1105 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/36980417/. DOI: 10.3390/diagnostics13061105.
[33]
NISSAN N, ANABY D, MAHAMEED G, et al. Ultrafast DCE-MRI for discriminating pregnancy-associated breast cancer lesions from lactation related background parenchymal enhancement[J]. Eur Radiol, 2023, 33(11): 8122-8131. DOI: 10.1007/s00330-023-09805-8.
[34]
SHIN S U, CHO N, KIM S Y, et al. Time-to-enhancement at ultrafast breast DCE-MRI: potential imaging biomarker of tumour aggressiveness[J]. Eur Radiol, 2020, 30(7): 4058-4068. DOI: 10.1007/s00330-020-06693-0.
[35]
KATAOKA M, HONDA M, OHASHI A, et al. Ultrafast dynamic contrast-enhanced MRI of the breast: how is it used?[J]. Magn Reson Med Sci, 2022, 21(1): 83-94. DOI: 10.2463/mrms.rev.2021-0157.
[36]
AO F, YAN Y, ZHANG Z L, et al. The value of dynamic contrast-enhanced magnetic resonance imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant diseases of the breast[J]. Acta Radiol, 2022, 63(7): 891-900. DOI: 10.1177/02841851211024002.
[37]
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2): 381-391. DOI: 10.1002/jmri.27362.
[38]
KANG S R, KIM H W, KIM H S. Evaluating the relationship between dynamic contrast-enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer[J]. J Magn Reson Imaging, 2020, 52(5): 1360-1373. DOI: 10.1002/jmri.27241.
[39]
QIAO M Y, LI C K, SUO S T, et al. Breast DCE-MRI radiomics: a robust computer-aided system based on reproducible BI-RADS features across the influence of datasets bias and segmentation methods[J]. Int J Comput Assist Radiol Surg, 2020, 15(6): 921-930. DOI: 10.1007/s11548-020-02177-0.
[40]
MILITELLO C, RUNDO L, DIMARCO M, et al. 3D DCE-MRI radiomic analysis for malignant lesion prediction in breast cancer patients[J]. Acad Radiol, 2022, 29(6): 830-840. DOI: 10.1016/j.acra.2021.08.024.
[41]
DEBBI K, HABERT P, GROB A, et al. Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance[J/OL]. Insights Imaging, 2023, 14(1): 64 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/37052738/. DOI: 10.1186/s13244-023-01404-x.
[42]
ZHANG M, HE G Y, PAN C J, et al. Discrimination of benign and malignant breast lesions on dynamic contrast-enhanced magnetic resonance imaging using deep learning[J]. J Cancer Res Ther, 2023, 19(6): 1589-1596. DOI: 10.4103/jcrt.jcrt_325_23.
[43]
ZHOU J J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
[44]
WANG S M, SUN Y Q, LI R M, et al. Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions[J]. Eur Radiol, 2022, 32(1): 639-649. DOI: 10.1007/s00330-021-08134-y.
[45]
DAIMIEL NARANJO I, GIBBS P, REINER J S, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J/OL]. Diagnostics, 2021, 11(6): 919 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/34063774/. DOI: 10.3390/diagnostics11060919.
[46]
WANG G S, GUO Q, SHI D F, et al. Clinical breast MRI-based radiomics for distinguishing benign and malignant lesions: an analysis of sequences and enhanced phases[J]. J Magn Reson Imaging, 2024, 60(3): 1178-1189. DOI: 10.1002/jmri.29150.
[47]
ZHANG R Z, WEI W, LI R, et al. An MRI-based radiomics model for predicting the benignity and malignancy of BI-RADS 4 breast lesions[J/OL]. Front Oncol, 2022, 11: 733260 [2024-06-02]. https://pubmed.ncbi.nlm.nih.gov/35155178/. DOI: 10.3389/fonc.2021.733260.

PREV Research progress of preoperative magnetic resonance imaging techniques in axillary lymph node metastasis of breast cancer
NEXT Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn