Share:
Share this content in WeChat
X
Review
Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma
LI Waner  CHAI Ruimei 

Cite this article as: LI W E, CHAI R M. Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(9): 194-200. DOI:10.12015/issn.1674-8034.2024.09.034.


[Abstract] Diffusion weighted imaging (DWI) has been widely applied in hepatocellular carcinoma (HCC). Due to the traditional DWI technology is difficult to accurately reflect the diffusion information of water molecules deviating from a Gaussian distribution. In recent years, several studies have been investigated the role of non-Gaussian DWI models in HCC. This imaging technology application has expanded from the nervous system to the body and it has been partially applied to the diagnosis and differential diagnosis, pathological classification and grading, evaluation of treatment response, and prognostic evaluation in HCC. Based on this, this paper summarized the current state of research and the technical principles of non-Gaussian distribution DWI models in HCC, aiming to further analyze the challenges of advanced diffusion technology in HCC, promote the further application and development of non-Gaussian distribution imaging models in HCC. In addition, the future research directions will also be discussed.
[Keywords] hepatocellular carcinoma;magnetic resonance imaging;diffusion weighted imaging;non-Gaussian distribution model

LI Waner   CHAI Ruimei*  

Department of Radiology, The First Hospital of China Medical University, Shenyang 110002, China

Corresponding author: CHAI R M, E-mail: chairuimei@sina.cn

Conflicts of interest   None.

Received  2024-04-30
Accepted  2024-08-26
DOI: 10.12015/issn.1674-8034.2024.09.034
Cite this article as: LI W E, CHAI R M. Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2024, 15(9): 194-200. DOI:10.12015/issn.1674-8034.2024.09.034.

[1]
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604. DOI: 10.1038/s41575-019-0186-y.
[2]
TRAMONTANO L, CAVALIERE C, SALVATORE M, et al. The role of non-gaussian models of diffusion weighted MRI in hepatocellular carcinoma: a systematic review[J/OL]. J Clin Med, 2021, 10(12): 2641 [2023-11-10]. https://doi.org/10.3390/jcm10122641. DOI: 10.3390/jcm10122641.
[3]
ZHOU S Y, FENG F. Research progress of magnetic resonance diffusion kurtosis imaging in cervical cancer[J]. Chin J Magn Reson Imag, 2023, 14(10): 189-194. DOI: 10.12015/issn.1674-8034.2023.10.034.
[4]
JIA Y M, CAI H S, WANG M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules[J/OL]. Contrast Media Mol Imaging, 2019, 2019: 2030147 [2023-11-10].https://doi.org/10.1155/2019/2030147. DOI: 10.1155/2019/2030147.
[5]
PALUMBO P, MARTINESE A, ANTENUCCI M R, et al. Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer[J]. Gland Surg, 2023, 12(12): 1806-1822. DOI: 10.21037/gs-23-53.
[6]
ZHANG R, BAI Y, WEI W, et al. Basic principles of intravoxel incoherent motion and diffusional kurtosis imaging and their applications in central nervous system diseases. Chin J Magn Reson Imaging, 2020, 11(9): 804-808. DOI: 10.12015/issn.1674-8034.2020.09.019.
[7]
CUI P X, YANG K H, ZHOU Q. Application value of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of benign and malignant abdominal tumours in children[J]. Chin J Modern Medicine, 2024, 26(1): 28-32. DOI: 10.3969/j.issn.1672-9463.2024.01.006.
[8]
FENG Q, HE S, ZHANG Y J, et al. Differential diagnosis of liver lesions with D value of intravoxel incoherent motion: a meta-analysis[J]. J Clin Radiol, 2019, 38(9): 1658-1663. DOI: 10.13437/j.cnki.jcr.2019.09.019.
[9]
WANG X, FENG S, LI H, et al. The value of MRI IVIM in identifying hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Chin J Magn Reson Imag, 2023, 14(7): 49-52, 85. DOI: 10.12015/issn.1674-8034.2023.07.009.
[10]
PENG J, ZHENG J, YANG C, et al. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J/OL]. Sci Rep, 2020, 10(1): 7717 [2023-11-10]. https://doi.org/10.1038/s41598-020-64804-9. DOI: 10.1038/s41598-020-64804-9.
[11]
WANG J H, YANG Z X, LUO M, et al. Value of intravoxel incoherent motion (IVIM) imaging for differentiation between intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 1504463 [2023-11-10]. https://doi.org/10.1155/2022/1504463. DOI: 10.1155/2022/1504463.
[12]
ZHOU Y, YANG G, GONG X Q, et al. A study of the correlations between IVIM-DWI parameters and the histologic differentiation of hepatocellular carcinoma[J/OL]. Sci Rep, 2021, 11(1): 10392 [2023-11-10]. https://doi.org/10.1038/s41598-021-89784-2. DOI: 10.1038/s41598-021-89784-2.
[13]
YANG D W, SHE H L, WANG X P, et al. Diagnostic accuracy of quantitative diffusion parameters in the pathological grading of hepatocellular carcinoma: a meta-analysis[J]. J Magn Reson Imaging, 2020, 51(5): 1581-1593. DOI: 10.1002/jmri.26963.
[14]
SOKMEN B K, SABET S, OZ A, et al. Value of intravoxel incoherent motion for hepatocellular carcinoma grading[J]. Transplant Proc, 2019, 51(6): 1861-1866. DOI: 10.1016/j.transproceed.2019.02.027.
[15]
WEI Y, GAO F F, WANG M, et al. Intravoxel incoherent motion diffusion-weighted imaging for assessment of histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest[J]. Eur Radiol, 2019, 29(2): 535-544. DOI: 10.1007/s00330-018-5638-1.
[16]
WANG Q Q, YIN Z J, WANG J, et al. Application of intravoxel incoherent motion diffusion weighted imaging based on IShim in identification of focal liver lesions[J]. Chin J Med Imag, 2019, 27(12): 914-917, 925. DOI: 10.3969/j.issn.1005-5185.2019.12.008.
[17]
PENG J, YANG C, ZHENG J, et al. Intravoxel incoherent motion diffusion weighted imaging for the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma[J]. J Cancer Ther, 2019, 10(7): 591-601. DOI: 10.4236/jct.2019.107048.
[18]
JIA F, WU B L, YAN R F, et al. Prediction model for intermediate-stage hepatocellular carcinoma response to transarterial chemoembolization[J]. J Magn Reson Imaging, 2020, 52(6): 1657-1667. DOI: 10.1002/jmri.27189.
[19]
HECTORS S J, LEWIS S, KENNEDY P, et al. Assessment of hepatocellular carcinoma response to 90Y radioembolization using dynamic contrast material-enhanced MRI and intravoxel incoherent motion diffusion-weighted imaging[J/OL]. Radiol Imaging Cancer, 2020, 2(4): e190094 [2023-11-10]. https://doi.org/10.1148/rycan.2020190094. DOI: 10.1148/rycan.2020190094.
[20]
BURSAPALLE M R, VALAKKADAA J, AYAPPAN A. Papel de la imagen de movimiento incoherente intravóxel (IVIM) en la evaluación de la respuesta del carcinoma hepatocelular después de la quimioembolización transarterial (TACE): un estudio prospectivo[J]. Radiología, 2024, 66(1): 23-31. DOI: 10.1016/j.rx.2022.07.007.
[21]
ZHANG Y, KUANG S C, SHAN Q G, et al. Can IVIM help predict HCC recurrence after hepatectomy?[J]. Eur Radiol, 2019, 29(11): 5791-5803. DOI: 10.1007/s00330-019-06180-1.
[22]
CHEN J Y, YIN J H, LI X. The value of intravoxel incoherent motion imaging in predicting microvascular invasion of hepatocellular carcinoma[J]. Radiol Pract, 2022, 37(11): 1396-1399. DOI: 10.13609/j.cnki.1000-0313.2022.11.011.
[23]
LIU B E, ZENG Q Y, HUANG J B, et al. IVIM using convolutional neural networks predicts microvascular invasion in HCC[J]. Eur Radiol, 2022, 32(10): 7185-7195. DOI: 10.1007/s00330-022-08927-9.
[24]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2023-11-10]. https://doi.org/10.1016/j.ejrad.2022.110237. DOI: 10.1016/j.ejrad.2022.110237.
[25]
ZHENG J, GONG X Q, TAO Y Y, et al. A correlative study between IVIM-DWI parameters and the expression levels of ang-2 and TKT in hepatocellular carcinoma[J/OL]. Front Oncol, 2021, 10: 594366 [2023-11-10]. https://doi.org/10.3389/fonc.2020.594366. DOI: 10.3389/fonc.2020.594366.
[26]
SHI G F, HAN X, WANG Q, et al. Evaluation of multiple prognostic factors of hepatocellular carcinoma with intra-voxel incoherent motions imaging by extracting the histogram metrics[J]. Cancer Manag Res, 2020, 12: 6019-6031. DOI: 10.2147/CMAR.S262973.
[27]
GRANATA V, FUSCO R, BELLI A, et al. Diffusion weighted imaging and diffusion kurtosis imaging in abdominal oncological setting: why and when[J/OL]. Infect Agent Cancer, 2022, 17(1): 25 [2023-11-10]. https://doi.org/10.1186/s13027-022-00441-3. DOI: 10.1186/s13027-022-00441-3.
[28]
GUO R, LIN J, YANG S H, et al. Diffusion kurtosis imaging (DKI) and stretched exponential model (SEM) of magnetic resonance imaging (MRI) for evaluating sequential tumor heterogeneity in an orthotopic hepatocellular carcinoma (HCC) xenograft model[J]. Fudan Univ J Med Sci, 2019, 46(3): 285-293. DOI: 10.3969/j.issn.1672-8467.2019.03.001.
[29]
HUANG Z D, WANG M, SHEN B Q, et al. Eiffcacy of diffusion kurtosis MR imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules[J]. Chin Arch Gen Surg Electron Ed, 2020, 14(3): 189-194. DOI: 10.3877/cma.j.issn.1674-0793.2020.03.006.
[30]
SHENG L J, LIU A L, ZHAO Y, et al. Multiple quantitative parameters of diffusion kurtosis imaging for preoperative evaluating pathological grade of hepatocellular carcinoma[J]. Chin J Med Imag, 2021, 29(4): 347-353. DOI: 10.3969/j.issn.1005-5185.2021.04.015.
[31]
CAO L K, CHEN J, DUAN T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade[J]. Quant Imaging Med Surg, 2019, 9(4): 590-602. DOI: 10.21037/qims.2019.02.14.
[32]
WANG G Z, GUO L F, GAO G H, et al. Magnetic resonance diffusion kurtosis imaging versus diffusion-weighted imaging in evaluating the pathological grade of hepatocellular carcinoma[J]. Cancer Manag Res, 2020, 12: 5147-5158. DOI: 10.2147/CMAR.S254371.
[33]
YUAN Z G, WANG Z Y, XIA M Y, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation[J/OL]. Cancer Imaging, 2019, 19(1): 30 [2023-11-10]. https://doi.org/10.1186/s40644-019-0213-9. DOI: 10.1186/s40644-019-0213-9.
[34]
YUAN Z G, WANG Z Y, XIA M Y, et al. Diffusion kurtosis imaging for assessing the therapeutic response of transcatheter arterial chemoembolization in hepatocellular carcinoma[J]. J Cancer, 2020, 11(8): 2339-2347. DOI: 10.7150/jca.32491.
[35]
LUO X, LI Y H, SHANG Q, et al. Role of diffusional kurtosis imaging in evaluating the efficacy of transcatheter arterial chemoembolization in patients with liver cancer[J]. Cancer Biother Radiopharm, 2019, 34(10): 614-620. DOI: 10.1089/cbr.2019.2878.
[36]
LI C H, WEN Y, XIE J H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging at high b values: a pilot study[J/OL]. Front Oncol, 2023, 13: 1167209 [2023-11-10]. https://doi.org/10.3389/fonc.2023.1167209. DOI: 10.3389/fonc.2023.1167209.
[37]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2023-11-10]. https://doi.org/10.1016/j.ejrad.2022.110237. DOI: 10.1016/j.ejrad.2022.110237.
[38]
TANG L, ZHOU X J. Diffusion MRI of cancer: from low to high b-values[J]. J Magn Reson Imaging, 2019, 49(1): 23-40. DOI: 10.1002/jmri.26293.
[39]
NODA Y, GOSHIMA S, FUJIMOTO K, et al. Comparison of the diagnostic value of mono-exponential, Bi-exponential, and stretched exponential signal models in diffusion-weighted MR imaging for differentiating benign and malignant hepatic lesions[J]. Magn Reson Med Sci, 2021, 20(1): 69-75. DOI: 10.2463/mrms.mp.2019-0151.
[40]
FUJIMOTO K, NODA Y, KAWAI N, et al. Comparison of mono-exponential, bi-exponential, and stretched exponential diffusion-weighted MR imaging models in differentiating hepatic hemangiomas from liver metastases[J/OL]. Eur J Radiol, 2021, 141: 109806 [2023-11-10]. https://doi.org/10.1016/j.ejrad.2021.109806. DOI: 10.1016/j.ejrad.2021.109806.
[41]
KIM H C, SEO N, CHUNG Y E, et al. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2019, 29(9): 5111-5120. DOI: 10.1007/s00330-019-06048-4.
[42]
XIE J H, LI C H, CHEN Y D, et al. Potential value of the stretched exponential and fractional order Calculus model in discriminating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an animal experiment of orthotopic xenograft nude mice[J/OL]. Curr Med Imaging, 2023 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/36946482/. DOI: 10.2174/1573405619666230322123117.
[43]
PARK J H, SEO N, CHUNG Y E, et al. Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography[J]. Eur Radiol, 2021, 31(7): 4813-4823. DOI: 10.1007/s00330-020-07600-3.
[44]
YANG J. Study on gadolinium disodium plug-in enhanced MRI and diffusion-weighted imaging models in predicting the early curative effect of hepatocellular carcinoma after TACE[D].Guangzhou: Southern Medical University, 2022. DOI: 10.27003/d.cnki.gojyu.2022.000948.
[45]
LI H X, XUE Y J, WANG L L, et al. Histogram analysis of stretched exponential diffusion weighted imaging model for predicting microvascular invasion of single hepatocellular carcinoma[J]. Chin J Med Imag Technol, 2021, 37(12): 1844-1848. DOI: 10.13929/j.issn.1003-3289.2021.12.020.
[46]
XIE J H, LONG L L, LI C H, et al. Non-gaussian diffusion-weighted imaging: the value of stretch index modeland fractional Calculus model in predicting microvascular invasion of hepatocellular carcinoma before operation[J]. J Clin Radiol, 2022, 41(12): 2250-2256. DOI: 10.13437/j.cnki.jcr.2022.12.021.
[47]
LI H X, WANG L L, ZHANG J, et al. Evaluation of microvascular invasion of hepatocellular carcinoma using whole-lesion histogram analysis with the stretched-exponential diffusion model[J/OL]. Br J Radiol, 2022, 95(1132): 20210631 [2023-11-10]. https://doi.org/10.1259/bjr.20210631. DOI: 10.1259/bjr.20210631.
[48]
MAO C P, HU L X, JIANG W, et al. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models[J]. Eur Radiol, 2024, 34(4): 2546-2559. DOI: 10.1007/s00330-023-10198-x.
[49]
GAO J, JIANG M C, ERRICOLO D, et al. Identifying potential imaging markers for diffusion property changes in a mouse model of amyotrophic lateral sclerosis: application of the continuous time random walk model to ultrahigh b-value diffusion-weighted MR images of spinal cord tissue[J/OL]. NMR Biomed, 2024, 37(1): e5037 [2023-11-10]. https://doi.org/10.1002/nbm.5037. DOI: 10.1002/nbm.5037.
[50]
XIE J H, LI C H, CHEN Y D, et al. Potential value of the stretched exponential and fractional order Calculus model in discriminating between hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an animal experiment of orthotopic xenograft nude mice[J/OL]. Curr Med Imaging, 2023 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/36946482/. DOI: 10.2174/1573405619666230322123117.
[51]
SHENG R F, ZHANG Y F, SUN W, et al. Staging chronic hepatitis B related liver fibrosis with a fractional order Calculus diffusion model[J]. Acad Radiol, 2022, 29(7): 951-963. DOI: 10.1016/j.acra.2021.07.005.
[52]
GUO R, LU F, LIN J, et al. Multi-b-value DWI to evaluate the synergistic antiproliferation and anti-heterogeneity effects of bufalin plus sorafenib in an orthotopic HCC model[J/OL]. Eur Radiol Exp, 2024, 8(1): 43 [2024-06-10]. https://doi.org/10.1186/s41747-024-00448-y. DOI: 10.1186/s41747-024-00448-y.
[53]
LI H X, WANG L L, ZHANG J, et al. Evaluation of microvascular invasion of hepatocellular carcinoma using whole-lesion histogram analysis with the stretched-exponential diffusion model[J/OL]. Br J Radiol, 2022, 95(1132): 20210631 [2023-11-10]. https://doi.org/10.1259/bjr.20210631. DOI: 10.1259/bjr.20210631.
[54]
CHEN J J, GUO Y X, GUO Y L, et al. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order calculus model: a pilot study[J]. Magn Reson Imaging, 2023, 95: 110-117. DOI: 10.1016/j.mri.2021.09.003.
[55]
GUO Y X, CHEN J J, ZHANG Y F, et al. Differentiating Cytokeratin 19 expression of hepatocellular carcinoma by using multi-b-value diffusion-weighted MR imaging with mono-exponential, stretched exponential, intravoxel incoherent motion, diffusion kurtosis imaging and fractional order calculus models[J/OL]. Eur J Radiol, 2022, 150: 110237 [2023-11-10]. https://doi.org/10.1016/j.ejrad.2022.110237. DOI: 10.1016/j.ejrad.2022.110237.
[56]
JIANG Y L, LI J, ZHANG P F, et al. Staging liver fibrosis with various diffusion-weighted magnetic resonance imaging models[J]. World J Gastroenterol, 2024, 30(9): 1164-1176. DOI: 10.3748/wjg.v30.i9.1164.
[57]
MEHTA R, BU Y Y, ZHONG Z, et al. Characterization of breast lesions using multi-parametric diffusion MRI and machine learning[J/OL]. Phys Med Biol, 2023, 68(8) [2023-11-10]. https://doi.org/10.1088/1361-6560/acbde0. DOI: 10.1088/1361-6560/acbde0.DOI:10.1088/1361-6560/acbde0.
[58]
ZHOU M, BAO D Y, HUANG H Y, et al. Utilization of diffusion-weighted derived mathematical models to predict prognostic factors of resectable rectal cancer[J]. Abdom Radiol (NY), 2024, 49(9): 3282-3293. DOI: 10.1007/s00261-024-04239-2.

PREV Application of radiomics based on different magnetic resonance imaging techniques in the differential diagnosis of breast lesions
NEXT Progress in MRI evaluation of nonalcoholic fatty liver disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn