Share:
Share this content in WeChat
X
Review
Progress in MRI evaluation of nonalcoholic fatty liver disease
LIU Guanchen  ZHANG Hongxia 

Cite this article as: LIU G C, ZHANG H X. Progress in MRI evaluation of nonalcoholic fatty liver disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 201-204. DOI:10.12015/issn.1674-8034.2024.09.035.


[Abstract] Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. NAFLD is divided into two main subtypes, non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). NASH is a progressive form of NAFLD that can further promote liver fibrosis and increase the risk of developing cirrhosis, so accurately distinguishing between nonalcoholic fatty liver disease and NASH and assessing the extent of liver inflammation and fibrosis is critical to prevent progression and adverse outcomes of the disease. MRI is a non-invasive method of liver evaluation, which can provide anatomical, functional and metabolic information of the liver, and is of great value in the diagnosis and staging of NAFLD. This review introduces the technical principles of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance elastography (MRE) and longitudinal relaxation time quantitative imaging (T1 mapping), and summarizes the research status of these quantitative imaging techniques in the evaluation of NAFLD. This review aims to discuss the advantages and challenges of MR quantitative imaging in the assessment of NAFLD, and provide new research ideas for quantifying the pathological changes of NAFLD.
[Keywords] non-alcoholic fatty liver disease;liver fibrosis;magnetic resonance imaging;quantitative evaluation

LIU Guanchen   ZHANG Hongxia*  

Imaging Center of Harbin Medical University Cancer Hospital, Harbin 150081, China

Corresponding author: ZHANG H X, E-mail: zhanghongxia2k@163.com

Conflicts of interest   None.

Received  2024-04-24
Accepted  2024-08-09
DOI: 10.12015/issn.1674-8034.2024.09.035
Cite this article as: LIU G C, ZHANG H X. Progress in MRI evaluation of nonalcoholic fatty liver disease[J]. Chin J Magn Reson Imaging, 2024, 15(9): 201-204. DOI:10.12015/issn.1674-8034.2024.09.035.

[1]
IONITA-RADU F, PATONI C, NANCOFF A S, et al. Berberine effects in pre-fibrotic stages of non-alcoholic fatty liver disease-clinical and pre-clinical overview and systematic review of the literature[J/OL]. Int J Mol Sci, 2024, 25(8): 4201 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/38673787/. DOI: 10.3390/ijms25084201.
[2]
POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss[J/OL]. BMC Endocr Disord, 2022, 22(1): 63 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/35287643/. DOI: 10.1186/s12902-022-00980-1.
[3]
WONG V W, EKSTEDT M, WONG G L, et al. Changing epidemiology, global trends and implications for outcomes of NAFLD[J]. J Hepatol, 2023, 79(3): 842-852. DOI: 10.1016/j.jhep.2023.04.036.
[4]
YOUNOSSI Z M, GOLABI P, PAIK J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/HEP.0000000000000004.
[5]
HUANG D Q, SINGAL A G, KONO Y, et al. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer[J]. Cell Metab, 2022, 34(7): 969-977. DOI: 10.1016/j.cmet.2022.05.003.
[6]
QUEK J, CHAN K E, WONG Z Y, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8(1): 20-30. DOI: 10.1016/S2468-1253(22)00317-X.
[7]
ŞENDUR A B, ŞENDUR H N. A standardized approach for MRI-PDFF is necessary in the assessment of diagnostic performances of the ultrasound-based hepatic fat quantification tools[J]. J Ultrasound Med, 2022, 41(12): 3159-3161. DOI: 10.1002/jum.16102.
[8]
LOOMBA R, RATZIU V, HARRISON S A, et al. Expert panel review to compare FDA and EMA guidance on drug development and endpoints in nonalcoholic steatohepatitis[J]. Gastroenterology, 2022, 162(3): 680-688. DOI: 10.1053/j.gastro.2021.10.051.
[9]
NOUREDDIN M, TRUONG E, GORNBEIN J A, et al. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis[J]. J Hepatol, 2022, 76(4): 781-787. DOI: 10.1016/j.jhep.2021.11.012.
[10]
WANG X P, YANG D W, YANG Z H. Research progress in quantitative assessment of pathological changes of chronic liver disease via MRI[J]. Chin J Med Imag, 2022, 30(2): 172-178. DOI: 10.3969/j.issn.1005-5185.2022.02.015.
[11]
IDILMAN I S, ANIKTAR H, IDILMAN R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy[J]. Radiology, 2013, 267(3): 767-775. DOI: 10.1148/radiol.13121360.
[12]
KIM J W, LEE C H, YANG Z P, et al. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis[J]. Quant Imaging Med Surg, 2022, 12(11): 5251-5262. DOI: 10.21037/qims-22-393.
[13]
SHIH K L, SU W W, CHANG C C, et al. Comparisons of parallel potential biomarkers of 1H-MRS-measured hepatic lipid content in patients with non-alcoholic fatty liver disease[J/OL]. Sci Rep, 2016, 6: 24031 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/27079922/. DOI: 10.1038/srep24031.
[14]
TAMAKI N, MUNAGANURU N, JUNG J, et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease[J]. Gut, 2022, 71(5): 983-990. DOI: 10.1136/gutjnl-2021-324264.
[15]
GU J L, LIU S S, DU S X, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis[J]. Eur Radiol, 2019, 29(7): 3564-3573. DOI: 10.1007/s00330-019-06072-4.
[16]
MCDONALD N, EDDOWES P J, HODSON J, et al. Multiparametric magnetic resonance imaging for quantitation of liver disease: a two-centre cross-sectional observational study[J/OL]. Sci Rep, 2018, 8(1): 9189 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/29907829/. DOI: 10.1038/s41598-018-27560-5.
[17]
TANG A, TAN J, SUN M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis[J]. Radiology, 2013, 267(2): 422-431. DOI: 10.1148/radiol.12120896.
[18]
RODGE G A, GOENKA M K, GOENKA U, et al. Quantification of liver fat by MRI-PDFF imaging in patients with suspected non-alcoholic fatty liver disease and its correlation with metabolic syndrome, liver function test and ultrasonography[J]. J Clin Exp Hepatol, 2021, 11(5): 586-591. DOI: 10.1016/j.jceh.2020.11.004.
[19]
KIM B K, BERNSTEIN N, HUANG D Q, et al. Clinical and histologic factors associated with discordance between steatosis grade derived from histology vs. MRI-PDFF in NAFLD[J]. Aliment Pharmacol Ther, 2023, 58(2): 229-237. DOI: 10.1111/apt.17564.
[20]
SHEN W, MIDDLETON M S, CUNHA G M, et al. Changes in abdominal adipose tissue depots assessed by MRI correlate with hepatic histologic improvement in non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 78(2): 238-246. DOI: 10.1016/j.jhep.2022.10.027.
[21]
LOOMBA R, NEUSCHWANDER-TETRI B A, SANYAL A, et al. Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH[J]. Hepatology, 2020, 72(4): 1219-1229. DOI: 10.1002/hep.31121.
[22]
HARRISON S A, GAWRIEH S, ROBERTS K, et al. Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort[J]. J Hepatol, 2021, 75(2): 284-291. DOI: 10.1016/j.jhep.2021.02.034.
[23]
CAUSSY C, REEDER S B, SIRLIN C B, et al. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials[J]. Hepatology, 2018, 68(2): 763-772. DOI: 10.1002/hep.29797.
[24]
PARISINOS C A, WILMAN H R, THOMAS E L, et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis[J]. J Hepatol, 2020, 73(2): 241-251. DOI: 10.1016/j.jhep.2020.03.032.
[25]
WELLE C L, OLSON M C, REEDER S B, et al. Magnetic resonance imaging of liver fibrosis, fat, and iron[J]. Radiol Clin North Am, 2022, 60(5): 705-716. DOI: 10.1016/j.rcl.2022.04.003.
[26]
MAHALINGAM N, TROUT A T, GANDHI D B, et al. Associations between MRI T1 mapping, liver stiffness, quantitative MRCP, and laboratory biomarkers in children and young adults with autoimmune liver disease[J/OL]. Abdom Radiol (NY), 2022, 47(2): 672-683 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/34932136/. DOI: 10.1007/s00261-021-03378-0.
[27]
ANDERSSON A, KELLY M, IMAJO K, et al. Clinical utility of magnetic resonance imaging biomarkers for identifying nonalcoholic steatohepatitis patients at high risk of progression: a multicenter pooled data and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(11): 2451-2461. DOI: 10.1016/j.cgh.2021.09.041.
[28]
JAYASWAL A N A, LEVICK C, SELVARAJ E A, et al. Prognostic value of multiparametric magnetic resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease[J]. Liver Int, 2020, 40(12): 3071-3082. DOI: 10.1111/liv.14625.
[29]
EDDOWES P J, MCDONALD N, DAVIES N, et al. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease[J]. Aliment Pharmacol Ther, 2018, 47(5): 631-644. DOI: 10.1111/apt.14469.
[30]
LI J H, LU X, ZHU Z, et al. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH[J]. Hepatology, 2023, 78(4): 1200-1208. DOI: 10.1097/HEP.0000000000000417.
[31]
DENNIS A, KELLY M D, FERNANDES C, et al. Correlations between MRI biomarkers PDFF and cT1 with histopathological features of non-alcoholic steatohepatitis[J/OL]. Front Endocrinol, 2020, 11: 575843 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/33584535/. DOI: 10.3389/fendo.2020.575843.
[32]
TONEV D, SHUMBAYAWONDA E, TETLOW L A, et al. The effect of multi-parametric magnetic resonance imaging in standard of care for nonalcoholic fatty liver disease: protocol for a randomized control trial[J/OL]. JMIR Res Protoc, 2020, 9(10): e19189 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/33104014/. DOI: 10.2196/19189.
[33]
MOJTAHED A, KELLY C J, HERLIHY A H, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases[J]. Abdom Radiol, 2019, 44(1): 72-84. DOI: 10.1007/s00261-018-1701-2.
[34]
AMANATIDOU A I, KALIORA A C, AMERIKANOU C, et al. Association of dietary patterns with MRI markers of hepatic inflammation and fibrosis in the MAST4HEALTH study[J/OL]. Int J Environ Res Public Health, 2022, 19(2): 971 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/35055797/. DOI: 10.3390/ijerph19020971.
[35]
KOUTOUKIDIS D A, MOZES F E, JEBB S A, et al. A low-energy total diet replacement program demonstrates a favorable safety profile and improves liver disease severity in nonalcoholic steatohepatitis[J]. Obesity, 2023, 31(7): 1767-1778. DOI: 10.1002/oby.23793.
[36]
MOURA CUNHA G, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[37]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[38]
OZTURK A, OLSON M C, SAMIR A E, et al. Liver fibrosis assessment: MR and US elastography[J]. Abdom Radiol (NY), 2022, 47(9): 3037-3050. DOI: 10.1007/s00261-021-03269-4.
[39]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/32254641/. DOI: 10.1186/s12876-020-01234-x.
[40]
XIAO G Q, ZHU S X, XIAO X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501. DOI: 10.1002/hep.29302.
[41]
HSU C, CAUSSY C, IMAJO K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 630-637. DOI: 10.1016/j.cgh.2018.05.059.
[42]
AJMERA V H, LIU A, SINGH S, et al. Clinical utility of an increase in magnetic resonance elastography in predicting fibrosis progression in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 71(3): 849-860. DOI: 10.1002/hep.30974.
[43]
JUNG J, LOOMBA R R, IMAJO K, et al. MRE combined with FIB-4 (MEFIB) index in detection of candidates for pharmacological treatment of NASH-related fibrosis[J]. Gut, 2021, 70(10): 1946-1953. DOI: 10.1136/gutjnl-2020-322976.
[44]
TORRES L, SCHUCH A, LONGO L, et al. New FIB-4 and NFS cutoffs to guide sequential non-invasive assessment of liver fibrosis by magnetic resonance elastography in NAFLD[J/OL]. Ann Hepatol, 2023, 28(1): 100774 [2024-07-07]. https://pubmed.ncbi.nlm.nih.gov/36280013/. DOI: 10.1016/j.aohep.2022.100774.

PREV Research progresses of non-Gaussian of diffusion weighted imaging models in hepatocellular carcinoma
NEXT Advances in the radiogenomics of hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn