Share:
Share this content in WeChat
X
Review
Advances in the application of MRI in the diagnosis and evaluation of discogenic low back pain caused by intervertebral disc degeneration
ZHAO Haifeng  ZHAO Xiangbo  DU Wenjuan  ZHANG Hao 

Cite this article as: ZHAO H F, ZHAO X B, DU W J, et al. Advances in the application of MRI in the diagnosis and evaluation of discogenic low back pain caused by intervertebral disc degeneration[J]. Chin J Magn Reson Imaging, 2024, 15(9): 224-229. DOI:10.12015/issn.1674-8034.2024.09.039.


[Abstract] Lower back pain is a prevalent health issue that imposes a significant burden on individuals and society, and discogenic lower back pain caused by disc degeneration is one of the most common etiologic factors. MR techniques are widely used for the routine diagnosis of disc degeneration and its complications. In recent years, with the advancement of artificial intelligence and quantitative techniques, T2WI-based texture analysis as well as various quantitative MR techniques have gradually become important tools for the early diagnosis of discogenic low back pain, the identification of painful discs, and the decision-making of treatment plans, as well as the evaluation of the efficacy of disc regenerative medicine. Multimodal image fusion and artificial intelligence-assisted diagnosis are expected to play an irreplaceable role in the diagnosis and treatment of discogenic low back pain and in the development of new disc therapies, and the application of highly specific disc identification sequences such as CEST and MRS, as well as research on the association between discogenic low back pain and brain function, will also lead to the optimization of clinical treatment plans. In this paper, the current applications and developmental trends of MRI technologies such as T2WI and quantitative MRI in discogenic low back pain caused by lumbar intervertebral disc degenerative are reviewed, with the aim of providing more potential MRI technical support for its early diagnosis and the evaluation of the efficacy of disc regenerative medicine.
[Keywords] low back pain;intervertebral disc degeneration;discogenic low back pain;magnetic resonance imaging;quantitative technique;early diagnosis

ZHAO Haifeng1, 2   ZHAO Xiangbo1, 2   DU Wenjuan1, 2   ZHANG Hao2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research, Lanzhou 730000, China

Corresponding author: ZHANG H, E-mail: zhanghao@lzu.edu.cn

Conflicts of interest   None.

Received  2024-05-09
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.039
Cite this article as: ZHAO H F, ZHAO X B, DU W J, et al. Advances in the application of MRI in the diagnosis and evaluation of discogenic low back pain caused by intervertebral disc degeneration[J]. Chin J Magn Reson Imaging, 2024, 15(9): 224-229. DOI:10.12015/issn.1674-8034.2024.09.039.

[1]
BERG-JOHANSEN B, HAN M, FIELDS A J, et al. Cartilage endplate thickness variation measured by ultrashort echo-time MRI is associated with adjacent disc degeneration[J/OL]. Spine, 2018, 43(10): E592-E600 [2024-02-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882595. DOI: 10.1097/BRS.0000000000002432.
[2]
CHERIF H, LI L, SNUGGS J, et al. Injectable hydrogel induces regeneration of naturally degenerate human intervertebral discs in a loaded organ culture model[J]. Acta Biomater, 2024, 176: 201-220. DOI: 10.1016/j.actbio.2023.12.041.
[3]
DENEUVILLE J P, YUSHCHENKO M, VENDEUVRE T, et al. Quantitative MRI to characterize the nucleus pulposus morphological and biomechanical variation according to sagittal bending load and radial fissure, an ex vivo ovine specimen proof-of-concept study[J/OL]. Front Bioeng Biotechnol, 2021, 9: 676003 [2024-05-06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220087. DOI: 10.3389/fbioe.2021.676003.
[4]
SOARES FONSECA L, PEREIRA SILVA J, BASTOS SOUZA M, et al. Effectiveness of pharmacological and non-pharmacological therapy on pain intensity and disability in older people with chronic nonspecific low back pain: a systematic review with meta-analysis[J]. Eur Spine J, 2023, 32(9): 3245-3271. DOI: 10.1007/s00586-023-07857-4.
[5]
KNEZEVIC N N, CANDIDO K D, VLAEYEN J W S, et al. Low back pain[J]. Lancet, 2021, 398(10294): 78-92. DOI: 10.1016/S0140-6736(21)00733-9.
[6]
VAN DER GRAAF J W, KROEZE R J, BUCKENS C F M, et al. MRI image features with an evident relation to low back pain: a narrative review[J]. Eur Spine J, 2023, 32(5): 1830-1841. DOI: 10.1007/s00586-023-07602-x.
[7]
WOCIAL K, FELDMAN B A, MRUK B, et al. Imaging features of the aging spine[J]. Pol J Radiol, 2021, 86: 380-386. DOI: 10.5114/pjr.2021.107728.
[8]
XIN J G, WANG Y J, ZHENG Z, et al. Treatment of intervertebral disc degeneration[J]. Orthop Surg, 2022, 14(7): 1271-1280. DOI: 10.1111/os.13254.
[9]
BERMUDEZ-LEKERIKA P, CRUMP K B, TSERANIDOU S, et al. Immuno-modulatory effects of intervertebral disc cells[J/OL]. Front Cell Dev Biol, 2022, 10: 924692 [2024-03-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277224. DOI: 10.3389/fcell.2022.924692.
[10]
YE F B, LYU F J, WANG H, et al. The involvement of immune system in intervertebral disc herniation and degeneration[J/OL]. JOR Spine, 2022, 5(1): e1196 [2024-03-09]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966871. DOI: 10.1002/jsp2.1196.
[11]
LI W H, ZHAO H, ZHOU S B, et al. Does vertebral osteoporosis delay or accelerate lumbar disc degeneration? A systematic review[J]. Osteoporos Int, 2023, 34(12): 1983-2002. DOI: 10.1007/s00198-023-06880-x.
[12]
BINCH A L A, FITZGERALD J C, GROWNEY E A, et al. Cell-based strategies for IVD repair: clinical progress and translational obstacles[J]. Nat Rev Rheumatol, 2021, 17(3): 158-175. DOI: 10.1038/s41584-020-00568-w.
[13]
KOVACS F M, ARANA E, ROYUELA A, et al. Disc degeneration and chronic low back pain: an association which becomes nonsignificant when endplate changes and disc contour are taken into account[J]. Neuroradiology, 2014, 56(1): 25-33. DOI: 10.1007/s00234-013-1294-y.
[14]
CHEN X L, LI X Y, WANG Y, et al. Relation of lumbar intervertebral disc height and severity of disc degeneration based on Pfirrmann scores[J/OL]. Heliyon, 2023, 9(10): e20764 [2024-03-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585210. DOI: 10.1016/j.heliyon.2023.e20764.
[15]
SIMA S, CHEN X L, SHELDRICK K, et al. Reconsidering high intensity zones: its role in intervertebral disk degeneration and low back pain[J]. Eur Spine J, 2024, 33(4): 1474-1483. DOI: 10.1007/s00586-024-08185-x.
[16]
WADE K, BERGER-ROSCHER N, SAGGESE T, et al. How annulus defects can act as initiation sites for herniation[J]. Eur Spine J, 2022, 31(6): 1487-1500. DOI: 10.1007/s00586-022-07132-y.
[17]
MA J C, WANG R F, YU Y, et al. Is fractal dimension a reliable imaging biomarker for the quantitative classification of an intervertebral disk?[J]. Eur Spine J, 2020, 29(5): 1175-1180. DOI: 10.1007/s00586-020-06370-2.
[18]
WALDENBERG C, HEBELKA H, BRISBY H, et al. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration[J]. Eur Spine J, 2018, 27(5): 1042-1048. DOI: 10.1007/s00586-017-5264-7.
[19]
GAO F, LIU S, ZHANG X D, et al. Automated grading of lumbar disc degeneration using a push-pull regularization network based on MRI[J]. J Magn Reson Imaging, 2021, 53(3): 799-806. DOI: 10.1002/jmri.27400.
[20]
WALDENBERG C, BRISBY H, HEBELKA H, et al. Associations between vertebral localized contrast changes and adjacent annular fissures in patients with low back pain: a radiomics approach[J/OL]. J Clin Med, 2023, 12(15): 4891 [2024-04-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420134. DOI: 10.3390/jcm12154891.
[21]
TRATTNIG S, STELZENEDER D, GOED S, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T[J]. Eur Radiol, 2010, 20(11): 2715-2722. DOI: 10.1007/s00330-010-1843-2.
[22]
OGON I, TAKEBAYASHI T, TAKASHIMA H, et al. Analysis of neuropathic pain using magnetic resonance imaging T2 mapping of intervertebral disc in chronic low back pain[J]. Asian Spine J, 2019, 13(3): 403-409. DOI: 10.31616/asj.2018.0147.
[23]
LIU Z Z, WEN H Q, ZHU Y Q, et al. Short-term effect of lumbar traction on intervertebral discs in patients with low back pain: correlation between the T2 value and ODI/VAS score[J]. Cartilage, 2021, 13(1_suppl): 414S-423S. DOI: 10.1177/1947603521996793.
[24]
RAUDNER M, SCHREINER M M, HILBERT T, et al. Clinical implementation of accelerated T2 mapping: quantitative magnetic resonance imaging as a biomarker for annular tear and lumbar disc herniation[J]. Eur Radiol, 2021, 31(6): 3590-3599. DOI: 10.1007/s00330-020-07538-6.
[25]
RAUDNER M, SCHREINER M M, WEBER M, et al. Compositional magnetic resonance imaging in the evaluation of the intervertebral disc: Axial vs sagittal T2 mapping[J]. J Orthop Res, 2020, 38(9): 2057-2064. DOI: 10.1002/jor.24691.
[26]
BORTHAKUR A, MAURER P M, FENTY M, et al. T1ρ magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain[J]. Spine, 2011, 36(25): 2190-2196. DOI: 10.1097/BRS.0b013e31820287bf.
[27]
FENTY M, CRESCENZI R, FRY B, et al. Novel imaging of the intervertebral disk and pain[J]. Global Spine J, 2013, 3(3): 127-132. DOI: 10.1055/s-0033-1347930.
[28]
YANG L, SUN C, GONG T, et al. T1ρ, T2 and T2* mapping of lumbar intervertebral disc degeneration: a comparison study[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 1135 [2024-03-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793566. DOI: 10.1186/s12891-022-06040-y.
[29]
LIU Z G, LI J W, HU M, et al. The optimal timing of hydrogel injection for treatment of intervertebral disc degeneration: quantitative analysis based on T1ρ MR imaging[J/OL]. Spine, 2020, 45(22): E1451-E1459 [2024-03-25]. https://journals.lww.com/spinejournal/abstract/2020/11150/the_optimal_timing_of_hydrogel_injection_for.2.aspx. DOI: 10.1097/BRS.0000000000003667.
[30]
BOUHSINA N, DECANTE C, HARDEL J B, et al. Comparison of MRI T1, T2, and T2* mapping with histology for assessment of intervertebral disc degeneration in an ovine model[J/OL]. Sci Rep, 2022, 12(1): 5398 [2024-03-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8967912. DOI: 10.1038/s41598-022-09348-w.
[31]
KOLF A K, KONIECZNY M, HESPER T, et al. T2* mapping of the adult intervertebral lumbar disc: normative data and analysis of diurnal effects[J]. J Orthop Res, 2019, 37(9): 1956-1962. DOI: 10.1002/jor.24327.
[32]
SHALASH W, AHRENS S R, BARDONOVA L A, et al. Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertebral discs[J/OL]. JOR Spine, 2021, 4(4): e1179 [2024-03-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717112. DOI: 10.1002/jsp2.1179.
[33]
SHEN S, WANG H, ZHANG J, et al. Diffusion weighted imaging, diffusion tensor imaging, and T2* mapping of lumbar intervertebral disc in young healthy adults[J/OL]. Iran J Radiol, 2016, 13(1): e30069 [2024-06-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841898. DOI: 10.5812/iranjradiol.30069.
[34]
STEIN D, ASSAF Y, DAR G, et al. 3D virtual reconstruction and quantitative assessment of the human intervertebral disc's annulus fibrosus: a DTI tractography study[J/OL]. Sci Rep, 2021, 11(1): 6815 [2024-04-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994907. DOI: 10.1038/s41598-021-86334-8.
[35]
ZENG F F, ZHA Y F, LI L, et al. A comparative study of diffusion kurtosis imaging and T2* mapping in quantitative detection of lumbar intervertebral disk degeneration[J]. Eur Spine J, 2019, 28(9): 2169-2178. DOI: 10.1007/s00586-019-06007-z.
[36]
LI L, ZHOU Z G, XIONG W, et al. Characterization of the microstructure of the intervertebral disc in patients with chronic low back pain by diffusion kurtosis imaging[J]. Eur Spine J, 2019, 28(11): 2517-2525. DOI: 10.1007/s00586-019-06095-x.
[37]
LI R M, WANG D, WEI X E, et al. Study of DCE-MRI and IVIM-DWI on degenerative intervertebral disc neovascularization in patients with low back pain[J]. Chin J Magn Reson Imag, 2018, 9(9): 667-672. DOI: 10.12015/issn.1674-8034.2018.09.005.
[38]
PELLED G, SALAS M M, HAN P, et al. Intradiscal quantitative chemical exchange saturation transfer MRI signal correlates with discogenic pain in human patients[J/OL]. Sci Rep, 2021, 11(1): 19195 [2024-04-14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478892. DOI: 10.1038/s41598-021-97672-y.
[39]
BEZ M, ZHOU Z W, SHEYN D, et al. Molecular pain markers correlate with pH-sensitive MRI signal in a pig model of disc degeneration[J/OL]. Sci Rep, 2018, 8(1): 17363 [2024-04-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255799. DOI: 10.1038/s41598-018-34582-6.
[40]
LI L, ZHOU Z G, XIONG W, et al. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum[J]. Eur Spine J, 2021, 30(4): 1063-1071. DOI: 10.1007/s00586-021-06733-3.
[41]
RADKE K L, WILMS L M, FRENKEN M, et al. Lorentzian-corrected apparent exchange-dependent relaxation (LAREX) Ω-plot analysis-an adaptation for qCEST in a multi-pool system: comprehensive in silico, in situ, and in vivo studies[J/OL]. Int J Mol Sci, 2022, 23(13): 6920 [2024-06-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9266897. DOI: 10.3390/ijms23136920.
[42]
GORNET M F, EASTLACK R K, PEACOCK J, et al. Magnetic resonance spectroscopy (MRS) identification of chemically painful lumbar discs leads to improved 6-, 12-, and 24-month outcomes for discogenic low back pain surgeries[J]. Eur Spine J, 2023, 32(6): 1973-1984. DOI: 10.1007/s00586-023-07665-w.
[43]
GORNET M G, PEACOCK J, RYKEN T, et al. Establishing a gold standard for noninvasive identification of painful lumbar discs: prospective comparison of magnetic resonance spectroscopy vs low-pressure provocation discography[J/OL]. Int J Spine Surg, 2024, 18(1): 91-100 [2024-03-24]. https://www.ijssurgery.com/content/18/1/91. DOI: 10.14444/8574.DOI:10.14444/8574.
[44]
GUO Z Y, MA Y Y, WANG Y Q, et al. The role of IL-6 and TMEM100 in lumbar discogenic pain and the mechanism of the Glycine-serine-threonine metabolic axis: a metabolomic and molecular biology study[J]. J Pain Res, 2023, 16: 437-461. DOI: 10.2147/JPR.S400871.
[45]
TOCZYLOWSKA B, WOZNICA M, ZIEMINSKA E, et al. Metabolic biomarkers differentiate a surgical intervertebral disc from a nonsurgical intervertebral disc[J/OL]. Int J Mol Sci, 2023, 24(13): 10572 [2024-04-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341471. DOI: 10.3390/ijms241310572.
[46]
CRUMP K B, ALMINNAWI A, BERMUDEZ-LEKERIKA P, et al. Cartilaginous endplates: a comprehensive review on a neglected structure in intervertebral disc research[J/OL]. JOR Spine, 2023, 6(4): e1294 [2024-04-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751983. DOI: 10.1002/jsp2.1294.
[47]
JING X Z, WANG W C, HE X N, et al. HIF-2α/TFR1 mediated iron homeostasis disruption aggravates cartilage endplate degeneration through ferroptotic damage and mtDNA release: a new mechanism of intervertebral disc degeneration[J]. J Orthop Translat, 2024, 46: 65-78. DOI: 10.1016/j.jot.2024.03.005.
[48]
WEI Z, LOMBARDI A F, LEE R R, et al. Comprehensive assessment of in vivo lumbar spine intervertebral discs using a 3D adiabatic T1ρ prepared ultrashort echo time (UTE-Adiab-T1ρ) pulse sequence[J]. Quant Imaging Med Surg, 2022, 12(1): 269-280. DOI: 10.21037/qims-21-308.
[49]
BONNHEIM N B, WANG L, LAZAR A A, et al. Deep-learning-based biomarker of spinal cartilage endplate health using ultra-short echo time magnetic resonance imaging[J]. Quant Imaging Med Surg, 2023, 13(5): 2807-2821. DOI: 10.21037/qims-22-729.
[50]
THOMPSON K J, DAGHER A P, ECKEL T S, et al. Modic changes on MR images as studied with provocative diskography: clinical relevance: a retrospective study of 2457 disks[J]. Radiology, 2009, 250(3): 849-855. DOI: 10.1148/radiol.2503080474.
[51]
LAGERSTRAND K, HEBELKA H, BRISBY H. Low back pain patients and controls display functional differences in endplates and vertebrae measured with T2-mapping[J]. Eur Spine J, 2019, 28(2): 234-240. DOI: 10.1007/s00586-018-5824-5.
[52]
JONES B C, LEE H, CHENG C C, et al. MRI quantification of cortical bone porosity, mineralization, and morphologic structure in postmenopausal osteoporosis[J/OL]. Radiology, 2023, 307(2): e221810 [2024-04-23]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102628. DOI: 10.1148/radiol.221810.
[53]
LIU J, KARFOUL A, MARAGE L, et al. Estimation of intravoxel incoherent motion (IVIM) parameters in vertebral bone marrow: a comparative study of five algorithms[J]. MAGMA, 2023, 36(5): 837-847. DOI: 10.1007/s10334-023-01064-4.
[54]
MAZZOLI V, MOULIN K, KOGAN F, et al. Diffusion tensor imaging of skeletal muscle contraction using oscillating gradient spin echo[J/OL]. Front Neurol, 2021, 12: 608549 [2024-06-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917051. DOI: 10.3389/fneur.2021.608549.
[55]
MEI Y D, GAO H, CHEN W F, et al. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation[J/OL]. Front Neurosci, 2024, 18: 1357269 [2024-04-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956359. DOI: 10.3389/fnins.2024.1357269.

PREV Progress of MRI in the preoperative diagnosis of uterine sarcoma
NEXT Recent advances in radiomics for multiple myeloma diagnosis and prognosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn