Share:
Share this content in WeChat
X
Review
Recent advances in radiomics for multiple myeloma diagnosis and prognosis
ZHAO Xiangbo  ZHAO Haifeng  DU Wenjuan  ZHANG Hao 

Cite this article as: ZHAO X B, ZHAO H F, DU W J, et al. Recent advances in radiomics for multiple myeloma diagnosis and prognosis[J]. Chin J Magn Reson Imaging, 2024, 15(9): 230-234. DOI:10.12015/issn.1674-8034.2024.09.040.


[Abstract] Multiple myeloma (MM) is a malignant plasma cell neoplasm, and medical imaging plays a crucial role in its diagnosis and management. However, traditional imaging modalities struggle to provide in-depth analysis of intratumoral heterogeneity. Radiomics, an emerging field that employs high-throughput extraction and analysis of quantitative imaging features, offers a novel approach to unraveling the complexities within the tumor microenvironment. Driven by rapid advancements in artificial intelligence and ongoing clinical research, radiomics holds immense promise as a valuable tool for precision diagnosis and treatment of MM, potentially leading to improved patient outcomes. This review provides a comprehensive overview of recent advancements in radiomics research for MM. We delve into its applications in diagnosis and differential diagnosis, prognostication, and treatment response monitoring, highlighting key findings and potential clinical implications. Furthermore, we critically analyze the current challenges and future directions of radiomics in MM, aiming to guide its clinical translation and research endeavors. This review serves as a valuable resource for clinicians and researchers alike, offering insights into the evolving landscape of radiomics in MM management and its potential to enhance patient care.
[Keywords] radiomics;multiple myeloma;prognosis prediction;precision medicine;magnetic resonance imaging

ZHAO Xiangbo1, 2   ZHAO Haifeng1, 2   DU Wenjuan1, 2   ZHANG Hao2*  

1 The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China

2 Department of Radiology, the First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research, Lanzhou 730000, China

Corresponding author: ZHANG H, E-mail: zhanghao@lzu.edu.cn

Conflicts of interest   None.

Received  2024-05-21
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.09.040
Cite this article as: ZHAO X B, ZHAO H F, DU W J, et al. Recent advances in radiomics for multiple myeloma diagnosis and prognosis[J]. Chin J Magn Reson Imaging, 2024, 15(9): 230-234. DOI:10.12015/issn.1674-8034.2024.09.040.

[1]
DU J, HOU J. Interpretation of diagnosis of multiple myeloma in the guidelines for the diagnosis and management of multiple myeloma in China (2022 revision)[J]. Chin J Intern Med, 2022, 61(5): 463-465. DOI: 10.3760/cma.j.cn112138-20220316-00182.
[2]
ZHANG Y R, ZHU X Y, GUO L, et al. Application progress of MRI in the diagnosis and treatment of multiple myeloma[J]. Chin J Magn Reson Imag, 2023, 14(12): 192-197. DOI: 10.12015/issn.1674-8034.2023.12.035.
[3]
KRAEBER-BODÉRÉ F, JAMET B, BEZZI D, et al. New developments in myeloma treatment and response assessment[J]. J Nucl Med, 2023, 64(9): 1331-1343. DOI: 10.2967/jnumed.122.264972.
[4]
ALIPOUR E, POOYAN A, SHOMAL ZADEH F, et al. Current status and future of artificial intelligence in MM imaging: a systematic review[J/OL]. Diagnostics, 2023, 13(21): 3372 [2024-05-15]. https://pubmed.ncbi.nlm.nih.gov/37958267/. DOI: 10.3390/diagnostics13213372.
[5]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[6]
BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
[7]
REINERT C P, KRIEG E, ESSER M, et al. Role of computed tomography texture analysis using dual-energy-based bone marrow imaging for multiple myeloma characterization: comparison with histology and established serologic parameters[J]. Eur Radiol, 2021, 31(4): 2357-2367. DOI: 10.1007/s00330-020-07320-8.
[8]
TAGLIAFICO A S, DOMINIETTO A, BELGIOIA L, et al. Quantitative imaging and radiomics in multiple myeloma: a potential opportunity?[J/OL]. Medicina, 2021, 57(2): 94 [2024-05-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912483/. DOI: 10.3390/medicina57020094.
[9]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[10]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[11]
YIP S S F, AERTS H J W L. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. DOI: 10.1088/0031-9155/61/13/R150.
[12]
XIE K, SUN H F, LIN T, et al. Research progresses in feature extraction of radiomics[J]. Chin J Med Imag Technol, 2017, 33(12): 1792-1796. DOI: 10.13929/j.1003-3289.201707022.
[13]
SHI Z, LIU Q. Research and challenge of imaging technology and method[J]. Radiol Pract, 2018, 33(6): 633-636. DOI: 10.13609/j.cnki.1000-0313.2018.06.018.
[14]
ARIKAN F, YILDIZ Y, ERGELEN R, et al. The diagnostic value of abnormal bone marrow signal changes on magnetic resonance imaging: is bone marrow biopsy essential?[J/OL]. Curr Med Imaging, 2024 [2024-04-01]. https://www.eurekaselect.com/article/138997. DOI: 10.2174/0115734056267087231228124325.
[15]
PARK H, LEE S Y, LEE J, et al. Detecting multiple myeloma infiltration of the bone marrow on CT scans in patients with osteopenia: feasibility of radiomics analysis[J/OL]. Diagnostics, 2022, 12(4): 923 [2024-04-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025143/. DOI: 10.3390/diagnostics12040923.
[16]
TAGLIAFICO A S, CEA M, ROSSI F, et al. Differentiating diffuse from focal pattern on Computed Tomography in multiple myeloma: added value of a Radiomics approach[J/OL]. Eur J Radiol, 2019, 121: 108739 [2024-04-02]. https://www.ejradiology.com/article/S0720-048X(19)30389-4/abstract. DOI: 10.1016/j.ejrad.2019.108739.
[17]
YILDIRIM M, BAYKARA M. Differentiation of multiple myeloma and lytic bone metastases: histogram analysis[J]. J Comput Assist Tomogr, 2020, 44(6): 953-955. DOI: 10.1097/RCT.0000000000001086.
[18]
MENG Q F, JIANG B, CHEN Y M. CT study of vertebral metastasis: re-realization of the diagnostic role of the vertebral pedicle sign[J]. Chin J Radiol, 2000, 34(8): 13-17. DOI: 10.3760/j.issn:1005-1201.2000.08.004.
[19]
XIONG X, WANG J, HU S, et al. Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics[J/OL]. Front Oncol, 2021, 11: 601699 [2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/33718148/. DOI: 10.3389/fonc.2021.601699.
[20]
LIU J F, GUO W, ZENG P E, et al. Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: influence of features number on logistic regression model performance[J]. Eur Radiol, 2022, 32(1): 572-581. DOI: 10.1007/s00330-021-08150-y.
[21]
OGUNDIMU E O, ALTMAN D G, COLLINS G S. Adequate sample size for developing prediction models is not simply related to events per variable[J/OL]. J Clin Epidemiol, 2016, 76: 175-182 [2024-04-03]. https://link.springer.com/article/10.1007/s00256-023-04333-4. DOI: 10.1016/j.jclinepi.2016.02.031.
[22]
ÖZGÜL H A, AKIN I B, MUTLU U, et al. Diagnostic value of machine learning-based computed tomography texture analysis for differentiating multiple myeloma from osteolytic metastatic bone lesions in the peripheral skeleton[J]. Skeletal Radiol, 2023, 52(9): 1703-1711. DOI: 10.1007/s00256-023-04333-4.
[23]
LEE S, LEE S Y, KIM S, et al. Differentiating multiple myeloma and osteolytic bone metastases on contrast-enhanced computed tomography scans: the feasibility of radiomics analysis[J/OL]. Diagnostics, 2023, 13(4): 755 [2024-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955828/. DOI: 10.3390/diagnostics13040755.
[24]
ZHANG S, LIU M H, LI S, et al. An MRI-based radiomics nomogram for differentiating spinal metastases from multiple myeloma[J/OL]. Cancer Imaging, 2023, 23(1): 72 [2024-04-03]. https://pubmed.ncbi.nlm.nih.gov/37488622/. DOI: 10.1186/s40644-023-00585-4.
[25]
LIANG H Y. Differentiation of multiple myeloma and osteolytic metastasis based on MRI histogram of lumbar vertebra[D].Qingdao: Qingdao University, 2023. DOI: 10.27262/d.cnki.gqdau.2023.001270.
[26]
REINERT C P, KRIEG E M, BÖSMÜLLER H, et al. Mid-term response assessment in multiple myeloma using a texture analysis approach on dual energy-CT-derived bone marrow images - A proof of principle study[J/OL]. Eur J Radiol, 2020, 131: 109214 [2024-04-05]. https://www.ejradiology.com/article/S0720-048X(20)30403-4/abstract. DOI: 10.1016/j.ejrad.2020.109214.
[27]
SONG M K, CHUNG J S, LEE J J, et al. Magnetic resonance imaging pattern of bone marrow involvement as a new predictive parameter of disease progression in newly diagnosed patients with multiple myeloma eligible for autologous stem cell transplantation[J]. Br J Haematol, 2014, 165(6): 777-785. DOI: 10.1111/bjh.12820.
[28]
EKERT K, HINTERLEITNER C, BAUMGARTNER K, et al. Extended texture analysis of non-enhanced whole-body MRI image data for response assessment in multiple myeloma patients undergoing systemic therapy[J/OL]. Cancers, 2020, 12(3): 761 [2024-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140042/. DOI: 10.3390/cancers12030761.
[29]
LI Y, YIN P, LIU Y, et al. Radiomics models based on magnetic resonance imaging for prediction of the response to bortezomib-based therapy in patients with multiple myeloma[J/OL]. Biomed Res Int, 2022, 2022: 6911246 [2024-04-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467708/. DOI: 10.1155/2022/6911246.
[30]
KUMAR S K, CALLANDER N S, ADEKOLA K, et al. Multiple myeloma, version 3.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(12): 1685-1717. DOI: 10.6004/jnccn.2020.0057.
[31]
CALLANDER N S, BALJEVIC M, ADEKOLA K, et al. NCCN guidelines® insights: multiple myeloma, version 3.2022[J]. J Natl Compr Canc Netw, 2022, 20(1): 8-19. DOI: 10.6004/jnccn.2022.0002.
[32]
RAJKUMAR S V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management[J]. Am J Hematol, 2022, 97(8): 1086-1107. DOI: 10.1002/ajh.26590.
[33]
HANAMURA I. Multiple myeloma with high-risk cytogenetics and its treatment approach[J]. Int J Hematol, 2022, 115(6): 762-777. DOI: 10.1007/s12185-022-03353-5.
[34]
LIU J F, WANG C J, GUO W, et al. A preliminary study using spinal MRI-based radiomics to predict high-risk cytogenetic abnormalities in multiple myeloma[J]. Radiol Med, 2021, 126(9): 1226-1235. DOI: 10.1007/s11547-021-01388-y.
[35]
LIU J F, ZENG P E, GUO W, et al. Prediction of high-risk cytogenetic status in multiple myeloma based on magnetic resonance imaging: utility of radiomics and comparison of machine learning methods[J]. J Magn Reson Imaging, 2021, 54(4): 1303-1311. DOI: 10.1002/jmri.27637.
[36]
XIONG X, WANG J, HAO Z, et al. MRI-based bone marrow radiomics for predicting cytogenetic abnormalities in multiple myeloma[J/OL]. Clin Radiol, 2024, 79(4): e491-e499 [2024-04-03]. https://www.clinicalradiologyonline.net/article/S0009-9260(24)00007-2/abstract. DOI: 10.1016/j.crad.2023.12.014.
[37]
LI J, WANG Q, XUE H D, et al. Application progress of MRI in the prognostic prediction of multiple myeloma[J]. Chin J Magn Reson Imag, 2023, 14(8): 192-196. DOI: 10.12015/issn.1674-8034.2023.08.034.
[38]
MACLACHLAN K H, CAME N, DIAMOND B, et al. Minimal residual disease in multiple myeloma: defining the role of next generation sequencing and flow cytometry in routine diagnostic use[J]. Pathology, 2021, 53(3): 385-399. DOI: 10.1016/j.pathol.2021.02.003.
[39]
BÖCKLE D, TABARES P, ZHOU X, et al. Minimal residual disease and imaging-guided consolidation strategies in newly diagnosed and relapsed refractory multiple myeloma[J]. Br J Haematol, 2022, 198(3): 515-522. DOI: 10.1111/bjh.18249.
[40]
WU Z J, WANG H X, ZHENG Y M, et al. Lumbar MR-based radiomics nomogram for detecting minimal residual disease in patients with multiple myeloma[J]. Eur Radiol, 2023, 33(8): 5594-5605. DOI: 10.1007/s00330-023-09540-0.
[41]
BERTAMINI L, D'AGOSTINO M, GAY F. MRD assessment in multiple myeloma: progress and challenges[J]. Curr Hematol Malig Rep, 2021, 16(2): 162-171. DOI: 10.1007/s11899-021-00633-5.
[42]
XIONG X, ZHU Q, ZHOU Z, et al. Discriminating minimal residual disease status in multiple myeloma based on MRI: utility of radiomics and comparison of machine-learning methods[J/OL]. Clin Radiol, 2023, 78(11): e839-e846 [2024-04-06]. https://www.clinicalradiologyonline.net/article/S0009-9260(23)00318-5/abstract. DOI: 10.1016/j.crad.2023.07.011.
[43]
RODRIGUEZ-OTERO P, PAIVA B, SAN-MIGUEL J F. Roadmap to cure multiple myeloma[J/OL]. Cancer Treat Rev, 2021, 100: 102284 [2024-04-06]. https://www.cancertreatmentreviews.com/article/S0305-7372(21)00132-8/fulltext. DOI: 10.1016/j.ctrv.2021.102284.
[44]
WALLINGTON-BEDDOE C T, MYNOTT R L. Prognostic and predictive biomarker developments in multiple myeloma[J/OL]. J Hematol Oncol, 2021, 14(1): 151 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/34556161/. DOI: 10.1186/s13045-021-01162-7.
[45]
ZHANG L, WANG Q, WU X, et al. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma[J]. Eur Radiol, 2021, 31(4): 1843-1852. DOI: 10.1007/s00330-020-07295-6.
[46]
MOULOPOULOS L A, DIMOPOULOS M A, CHRISTOULAS D, et al. Diffuse MRI marrow pattern correlates with increased angiogenesis, advanced disease features and poor prognosis in newly diagnosed myeloma treated with novel agents[J]. Leukemia, 2010, 24(6): 1206-1212. DOI: 10.1038/leu.2010.70.
[47]
ZHU X L, WU J L. Application progress of MRI radiomics in the efficacy and prognosis of neoadjuvant chemotherapy for breast cancer[J]. Chin J Magn Reson Imag, 2022, 13(3): 159-161, 165. DOI: 10.12015/issn.1674-8034.2022.03.038.
[48]
HAN Y Q, WEI J W, JIANG H Y, et al. Research progress and clinical application of radiomics in hepatocellular carcinoma[J]. Sci Sin Vitae, 2020, 50(11): 1309-1320. DOI: 10.1360/SSV-2019-0230.
[49]
LI Y, LIU Y, YIN P, et al. MRI-based bone marrow radiomics nomogram for prediction of overall survival in patients with multiple myeloma[J/OL]. Front Oncol, 2021, 11: 709813 [2024-04-06] .https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8671997/. DOI: 10.3389/fonc.2021.709813.
[50]
COOK J, RAJENDRAN K, FERRERO A, et al. Photon counting detector computed tomography: a new frontier of myeloma bone disease evaluation[J]. Acta Haematol, 2023, 146(5): 419-423. DOI: 10.1159/000531461.

PREV Advances in the application of MRI in the diagnosis and evaluation of discogenic low back pain caused by intervertebral disc degeneration
NEXT
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn