Share:
Share this content in WeChat
X
Special Focus
Feasibility study of deep learning-based MRI image reconstruction algorithms for myocardial delayed enhancement in unrecognized myocardial infarction
LU Xuefang  YAN Yuchen  GONG Wei  QUAN Guangnan  LIU Weiyin  ZHA Yunfei 

Cite this article as: LU X F, YAN Y C, GONG W, et al. Feasibility study of deep learning-based MRI image reconstruction algorithms for myocardial delayed enhancement in unrecognized myocardial infarction[J]. Chin J Magn Reson Imaging, 2024, 15(10): 8-14, 49. DOI:10.12015/issn.1674-8034.2024.10.003.


[Abstract] Objective To investigate the diagnostic value of deep learning reconstruction (DLR)-based late gadolinium enhancement (LGEDL) in improving the recognition rate of unrecognized myocardial infarction (UMI).Materials and Methods This prospective study included 98 patients with suspected UMI who underwent cardiac magnetic resonance imaging (CMR) at our hospital from April 2022 to August 2023. Original LGE of conventional reconstruction (LGEO) and LGEDL images were obtained using conventional and commercially available inline DLR algorithms. The myocardial signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and percentage of enhanced area (Parea) were analysed using the standard deviation (SD) threshold approach (2SD-5SD) and full width at half maximum (FWHM) method. The diagnostic efficacies based on LGEDL and LGEO images were calculated.Results The SNRDL and CNRDL were two times better than the SNRO and CNRO, respectively (P<0.001). Parea-DL was higher than Parea-O, especially in the 2SD method (P<0.001). However, there was no intergroup difference based on the FWHM method (P>0.05). Overall myocardial SNR, CNR, and Parea measurements with different threshold methods had good intra- and interobserver agreement [intra-class correlation coefficient (ICC)>0.600, all P<0.001]. The receiver operating characteristic curve analysis revealed that each SD method exhibited good diagnostic efficacy for detecting UMI, with the Parea-DL having the best diagnostic efficacy based on the 5SD method (P<0.001). Overall, the LGEDL images had better image quality. Strong diagnostic efficacy for UMI identification was achieved when the signal threshold versus reference mean (STRM) was ≥4SD and ≥3SD for the LGEDL and LGEO, respectively.Conclusions STRM selection for LGEDL magnetic resonance images helps improve clinical decision-making in patients with UMI.
[Keywords] unrecognized myocardial infarction;diagnostic efficacy;deep learning reconstruction;late gadolinium enhancement;magnetic resonance imaging

LU Xuefang1   YAN Yuchen1   GONG Wei1   QUAN Guangnan2   LIU Weiyin2   ZHA Yunfei1*  

1 Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430030, China

2 GE Healthcare, Beijing 100176, China

Corresponding author: ZHA Y F, E-mail: zhayunfei999@126.com

Conflicts of interest   None.

Received  2024-02-03
Accepted  2024-07-05
DOI: 10.12015/issn.1674-8034.2024.10.003
Cite this article as: LU X F, YAN Y C, GONG W, et al. Feasibility study of deep learning-based MRI image reconstruction algorithms for myocardial delayed enhancement in unrecognized myocardial infarction[J]. Chin J Magn Reson Imaging, 2024, 15(10): 8-14, 49. DOI:10.12015/issn.1674-8034.2024.10.003.

[1]
THYGESEN K, ALPERT J S, JAFFE A S, et al. Fourth universal definition of myocardial infarction (2018)[J/OL]. Circulation, 2018, 138(20): e618-e651 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/30571511/. DOI: 10.1161/CIR.0000000000000617.
[2]
CHENG Y J, JIA Y H, YAO F J, et al. Association between silent myocardial infarction and long-term risk of sudden cardiac death[J/OL]. J Am Heart Assoc, 2021, 10(1): e017044 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/33372536/. DOI: 10.1161/JAHA.120.017044.
[3]
VÄHÄTALO J H, HUIKURI H V, HOLMSTRÖM L T A, et al. Association of silent myocardial infarction and sudden cardiac death[J]. JAMA Cardiol, 2019, 4(8): 796-802. DOI: 10.1001/jamacardio.2019.2210.
[4]
WEIR-MCCALL J R, FITZGERALD K, PAPAGIORCOPULO C J, et al. Prevalence of unrecognized myocardial infarction in a low-intermediate risk asymptomatic cohort and its relation to systemic atherosclerosis[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(6): 657-662. DOI: 10.1093/ehjci/jew155.
[5]
SUGIYAMA T, KANAJI Y, HOSHINO M, et al. Relationship between unrecognized myocardial infarction and underlying coronary plaque characteristics on optical coherence tomography[J]. JACC Cardiovasc Imaging, 2022, 15(10): 1830-1832. DOI: 10.1016/j.jcmg.2022.05.021.
[6]
DASTIDAR A G, BARITUSSIO A, GARATE E D, et al. Prognostic role of CMR andConventional risk factors inMyocardial infarction with nonobstructed coronary arteries[J]. JACC Cardiovasc Imaging, 2019, 12(10): 1973-1982. DOI: 10.1016/j.jcmg.2018.12.023.
[7]
PESAPANE F, CODARI M, SARDANELLI F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine[J/OL]. Eur Radiol Exp, 2018, 2(1): 35 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/30353365/. DOI: 10.1186/s41747-018-0061-6.
[8]
REINDL M, EITEL I, REINSTADLER S J. Role of cardiac magnetic resonance to improve risk prediction following acute ST-elevation myocardial infarction[J/OL]. J Clin Med, 2020, 9(4): 1041 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/32272692/. DOI: 10.3390/jcm9041041.
[9]
KIM C, PARK C H, KIM D Y, et al. Semi-quantitative scoring of late gadolinium enhancement of the left ventricle in patients with ischemic cardiomyopathy: improving interobserver reliability and agreement using consensus guidance from the Asian society of cardiovascular imaging-practical tutorial (ASCI-PT) 2020[J]. Korean J Radiol, 2022, 23(3): 298-307. DOI: 10.3348/kjr.2021.0387.
[10]
CHA M J, KIM S M, KIM Y, et al. Unrecognized myocardial infarction detected on cardiac magnetic resonance imaging: association with coronary artery calcium score and cardiovascular risk prediction scores in asymptomatic Asian cohort[J/OL]. PLoS One, 2018, 13(9): e0204040 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/30216389/. DOI: 10.1371/journal.pone.0204040.
[11]
DEMIRKIRAN A, EVERAARS H, AMIER R P, et al. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(7): 723-734. DOI: 10.1093/ehjci/jez094.
[12]
PRADELLA S, MAZZONI L N, LETTERIELLO M, et al. FLORA software: semi-automatic LGE-CMR analysis tool for cardiac lesions identification and characterization[J]. Radiol Med, 2022, 127(6): 589-601. DOI: 10.1007/s11547-022-01491-8.
[13]
VAN DER VELDE N, HASSING H C, BAKKER B J, et al. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification[J]. Eur Radiol, 2021, 31(6): 3846-3855. DOI: 10.1007/s00330-020-07461-w.
[14]
FLETT A S, HASLETON J, COOK C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance[J]. JACC Cardiovasc Imaging, 2011, 4(2): 150-156. DOI: 10.1016/j.jcmg.2010.11.015.
[15]
ZUCKER E J, SANDINO C M, KINO A, et al. Free-breathing accelerated cardiac MRI using deep learning: validation in children and young adults[J]. Radiology, 2021, 300(3): 539-548. DOI: 10.1148/radiol.2021202624.
[16]
BETANCUR J, COMMANDEUR F, MOTLAGH M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663. DOI: 10.1016/j.jcmg.2018.01.020.
[17]
OSCANOA J A, MIDDIONE M J, ALKAN C, et al. Deep learning-based reconstruction for cardiac MRI: a review[J/OL]. Bioengineering, 2023, 10(3): 334 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/36978725/. DOI: 10.3390/bioengineering10030334.
[18]
XUE H, REHMAN A, DAVIES R H, et al. CNNT DB-LGE: free-breathing dark blood late enhancement imaging using the convolutional neural network transformer speeds acquisition by 50%[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 23(Supplement_2): jeac141.006 [2024-02-02]. https://academic.oup.com/ehjcimaging/article/23/Supplement_2/jeac141.006/6673964. DOI: 10.1093/ehjci/jeac141.006.
[19]
EL-REWAIDY H, NEISIUS U, MANCIO J, et al. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI[J/OL]. NMR Biomed, 2020, 33(7): e4312 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/32352197/. DOI: 10.1002/nbm.4312.
[20]
FAHMY A S, ROWIN E J, CHAN R H, et al. Improved quantification of myocardium scar in late gadolinium enhancement images: deep learning based image fusion approach[J]. J Magn Reson Imaging, 2021, 54(1): 303-312. DOI: 10.1002/jmri.27555.
[21]
LIU T, TIAN Y, ZHAO S F, et al. Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis[J/OL]. IEEE Access, 2020, 8: 82153-82161 [2024-02-02]. https://ieeexplore.ieee.org/document/9082648. DOI: 10.1109/ACCESS.2020.2991424.
[22]
GHANBARI F, JOYCE T, LORENZONI V, et al. AI cardiac MRI scar analysis aids prediction of major arrhythmic events in the multicenter DERIVATE registry[J/OL]. Radiology, 2023, 307(3): e222239 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/36943075/. DOI: 10.1148/radiol.222239.
[23]
YOON S, NAKAMORI S, AMYAR A, et al. Accelerated cardiac MRI cine with use of resolution enhancement generative adversarial inline neural network[J/OL]. Radiology, 2023, 307(5): e222878 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/37249435/. DOI: 10.1148/radiol.222878.
[24]
BARBIER C E, THEMUDO R, BJERNER T, et al. Long-term prognosis of unrecognized myocardial infarction detected with cardiovascular magnetic resonance in an elderly population[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 43 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/27430315/. DOI: 10.1186/s12968-016-0264-z.
[25]
CHEN Q, FANG S, YUCHEN Y, et al. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: improvement of image quality and impact on apparent diffusion coefficient value[J/OL]. Eur J Radiol, 2023, 168: 111149 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/37862927/. DOI: 10.1016/j.ejrad.2023.111149.
[26]
LIU Q, YANG Z G, LI Y. Clinical application and current research status of cardiac magnetic resonance imaging of myocardial infarction[J]. Chin J Magn Reson Imag, 2021, 12(8): 98-100, 107. DOI: 10.12015/issn.1674-8034.2021.08.022.
[27]
MUSCOGIURI G, MARTINI C, GATTI M, et al. Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm[J/OL]. Int J Cardiol, 2021, 343: 164-170 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/34517017/. DOI: 10.1016/j.ijcard.2021.09.012.
[28]
DAVIS T M E, FORTUN P, MULDER J, et al. Silent myocardial infarction and its prognosis in a community-based cohort of Type 2 diabetic patients: the Fremantle Diabetes Study[J]. Diabetologia, 2004, 47(3): 395-399. DOI: 10.1007/s00125-004-1344-4.
[29]
GANESAN A N, GUNTON J, NUCIFORA G, et al. Impact of Late Gadolinium Enhancement on mortality, sudden death and major adverse cardiovascular events in ischemic and nonischemic cardiomyopathy: a systematic review and meta-analysis[J/OL]. Int J Cardiol, 2018, 254: 230-237 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/29407096/. DOI: 10.1016/j.ijcard.2017.10.094.
[30]
HALLIDAY B P, BAKSI A J, GULATI A, et al. Outcome in dilated cardiomyopathy related to the extent, location, andPattern of late gadolinium enhancement[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1645-1655. DOI: 10.1016/j.jcmg.2018.07.015.
[31]
WENG Z, YAO J L, CHAN R H, et al. Prognostic value of LGE-CMR in HCM: a meta-analysis[J]. JACC Cardiovasc Imaging, 2016, 9(12): 1392-1402. DOI: 10.1016/j.jcmg.2016.02.031.
[32]
STONE G W, SELKER H P, THIELE H, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials[J]. J Am Coll Cardiol, 2016, 67(14): 1674-1683. DOI: 10.1016/j.jacc.2016.01.069.
[33]
TAYLOR A M. The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging[J]. Pediatr Radiol, 2022, 52(11): 2131-2138. DOI: 10.1007/s00247-021-05218-1.
[34]
VAN DER ENDE M Y, JUAREZ-OROZCO L E, WAARDENBURG I, et al. Sex-based differences in unrecognized myocardial infarction[J/OL]. J Am Heart Assoc, 2020, 9(13): e015519 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/32573316/. DOI: 10.1161/JAHA.119.015519.
[35]
BUSTIN A, JANICH M A, BRAU A C, et al. Joint denoising and motion correction: initial application in single-shot cardiac MRI[J/OL]. J Cardiovasc Magn Reson, 2015, 17: Q29 [2024-02-02]. https://www.sciencedirect.com/science/article/pii/S1097664723020409?via%3Dihub. DOI: 10.1186/1532-429x-17-s1-q29.
[36]
VAN DEN HOOGEN I J, WANG X, BUTCHER S C, et al. Incorporating coronary artery calcium scoring in the prediction of obstructive coronary artery disease with myocardial ischemia: a study with sequential use of coronary computed tomography angiography and positron emission tomography imaging[J]. J Nucl Cardiol, 2023, 30(1): 178-188. DOI: 10.1007/s12350-022-03132-z.
[37]
JENISTA E R, WENDELL D C, AZEVEDO C F, et al. Revisiting how we perform late gadolinium enhancement CMR: insights gleaned over 25 years of clinical practice[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 18 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/36922844/. DOI: 10.1186/s12968-023-00925-0.
[38]
MIKAMI Y, KOLMAN L, JONCAS S X, et al. Accuracy and reproducibility of semi-automated late gadolinium enhancement quantification techniques in patients with hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1): 85 [2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/25315701/. DOI: 10.1186/s12968-014-0085-x.
[39]
ANTIOCHOS P, GE Y, STEEL K, et al. Imaging of clinically unrecognized myocardial fibrosis in patients with suspected coronary artery disease[J]. J Am Coll Cardiol, 2020, 76(8): 945-957. DOI: 10.1016/j.jacc.2020.06.063.

PREV Preliminary application of deep learning-based image reconstruction in improving temporomandibular joint MRI image quality
NEXT Application value of diffusion-weighted imaging reconstructed based on deep learning in benign and malignant differentiation of pulmonary lesions
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn