Share:
Share this content in WeChat
X
Special Focus
Deep learning-based reconstruction of diffusion-weighted imaging images to assess the activity of thyroid-associated ophthalmopathy
WANG Yunmeng  CUI Yuanyuan  NI Shuangshuang  DAI Jiankun  WAN Xinyi  CHEN Xin  JIANG Qinling  CHENG Yuxin  ZHANG Tianran  MA Yichuan  XIAO Yi 

Cite this article as: WANG Y M, CUI Y Y, NI S S, et al. Deep learning-based reconstruction of diffusion-weighted imaging images to assess the activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2024, 15(10): 36-42, 68. DOI:10.12015/issn.1674-8034.2024.10.007.


[Abstract] Objective To investigate the value of deep learning reconstruction (DLR) orbital diffusion weighted imaging (DWI) images in the assessment of active and inactive stages of thyroid-associated ophthalmopathy (TAO).Materials and Methods This prospectively study included 73 clinically diagnosed TAO patients (46 active TAO, 27 inactive TAO) and 26 healthy controls from April to September 2023. All participants underwent orbital MRI scans using a 3.0 T MRI scanner and a 21ch head-and-neck combined coil. DWI sequences with field of view optimized and constrained undistorted single-shot imaging and multiplexed sensitivity encoding (FOCUS MUSE) were reconstructed by conventional reconstruction (ConR) and DLR. Two diagnostic radiologists independently subjectively evaluated the image quality of the two sequences using a four-point Likert scale. The image quality was objectively evaluated by measuring the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of extraocular muscle (EOM). The DWI apparent diffusion coefficient (ADC) of EOM was used to distinguishing active from inactive TAO. The Wilcoxon was applied to test the difference of SNR, CNR, and ADC between ConR and DLR DWI, separately. Using the Clinical Activity Score (CAS) as the gold standard. The Kruskal-Wallis test was used to compare the difference of ADC between healthy controls, active and inactive TAO patients. Receiver operating characteristics (ROC) curves were used to compare the diagnostic performance of EOM ADC for differentiating active from inactive TAO patients between ConR and DLR DWI. The correlation between the EOM ADC and CAS of TAO patients was analyzed using Spearman's rank correlation coefficient.Results DLR DWI had significantly higher subjective scores than ConR DWI for Sharpness of boundaries and overall image quality. The intra- and inter-reader agreement for both sequences was good (Kappa>0.650). Significantly higher SNR and CNR in EOM DLR DWI compared to ConR (all P<0.001). No significant difference of EOM ADC was observed between ConR and DLR DWI (P>0.05). In both sequences, the EOM ADC obtained was significantly higher in the active TAO than in both inactive TAO and healthy controls, respectively (all P<0.001). There was no significant difference of EOM ADC between inactive TAO and healthy controls (P>0.05). The EOM ADC extracted from both ConR DWI (r=0.637, P<0.001) and DLR DWI (r=0.662, P<0.001) was significantly positively correlated with the CAS. Compared with ConR DWI, DLR DWI presented better performance for discriminating active from inactive TAO patients (area under the curve: 0.959 vs. 0.939, P=0.020).Conclusions DLR improved the image quality of orbital DWI without increasing scan time. Compared to ConR, ADC values obtained based on DLR DWI were improved in identifying the activity of TAO and correlation with CAS.
[Keywords] thyroid-associated ophthalmopathy;extraocular muscle;diffusion weighted imaging;deep learning reconstruction;magnetic resonance imaging

WANG Yunmeng1, 2   CUI Yuanyuan2   NI Shuangshuang2   DAI Jiankun3   WAN Xinyi2   CHEN Xin2   JIANG Qinling2   CHENG Yuxin2   ZHANG Tianran2   MA Yichuan4*   XIAO Yi2*  

1 Graduate School of Bengbu Medical University, Bengbu 233000, China

2 Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China

3 General Electric Healthcare Systems Trade Development (Shanghai) Company, Shanghai 200120, China

4 Department of Radiology, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China

Corresponding author: XIAO Y, E-mail: xiaoyi@188.com MA Y C, E-mail: myc57688754@163.com

Conflicts of interest   None.

Received  2024-01-10
Accepted  2024-05-13
DOI: 10.12015/issn.1674-8034.2024.10.007
Cite this article as: WANG Y M, CUI Y Y, NI S S, et al. Deep learning-based reconstruction of diffusion-weighted imaging images to assess the activity of thyroid-associated ophthalmopathy[J]. Chin J Magn Reson Imaging, 2024, 15(10): 36-42, 68. DOI:10.12015/issn.1674-8034.2024.10.007.

[1]
BARRIO-BARRIO J, SABATER A L, BONET-FARRIOL E, et al. Graves' ophthalmopathy: visa versus EUGOGO classification, assessment, and management[J/OL]. J Ophthalmol, 2015, 2015: 249125 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/26351570/. DOI: 10.1155/2015/249125.
[2]
ČIVRNÝ J, KARHANOVÁ M, HÜBNEROVÁ P, et al. MRI in the assessment of thyroid-associated orbitopathy activity[J]. Clin Radiol, 2022, 77(12): 925-934. DOI: 10.1016/j.crad.2022.08.124.
[3]
BURCH H B, PERROS P, BEDNARCZUK T, et al. Management of thyroid eye disease: a consensus statement by the American thyroid association and the European thyroid association[J]. Thyroid, 2022, 32(12): 1439-1470. DOI: 10.1089/thy.2022.0251.
[4]
DOLMAN P J. Grading severity and activity in thyroid eye disease[J/OL]. Ophthalmic Plast Reconstr Surg, 2018, 34(4S Suppl 1): S34-S40 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/29952931/. DOI: 10.1097/IOP.0000000000001150.
[5]
TORTORA F, CIRILLO M, FERRARA M, et al. Disease activity in Graves' ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score[J]. Neuroradiol J, 2013, 26(5): 555-564. DOI: 10.1177/197140091302600509.
[6]
KILICARSLAN R, ALKAN A, ILHAN M M, et al. Graves' ophthalmopathy: the role of diffusion-weighted imaging in detecting involvement of extraocular muscles in early period of disease[J/OL]. Br J Radiol, 2015, 88(1047): 20140677 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/25525866/. DOI: 10.1259/bjr.20140677.
[7]
FU Q, LIU D X, MA H, et al. Turbo gradient and spin-echo BLADE-DWI for extraocular muscles in thyroid-associated ophthalmopathy[J/OL]. J Clin Med, 2023, 12(1): 344 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36615144/. DOI: 10.3390/jcm12010344.
[8]
LI Z Q, PIPE J G, LEE C Y, et al. X-PROP: a fast and robust diffusion-weighted propeller technique[J]. Magn Reson Med, 2011, 66(2): 341-347. DOI: 10.1002/mrm.23033.
[9]
TANABE M, HIGASHI M, BENKERT T, et al. Reduced field-of-view diffusion-weighted magnetic resonance imaging of the pancreas with tilted excitation plane: a preliminary study[J]. J Magn Reson Imaging, 2021, 54(3): 715-720. DOI: 10.1002/jmri.27590.
[10]
CHEN N K, GUIDON A, CHANG H C, et al. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)[J/OL]. Neuroimage, 2013, 72: 41-47 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/23370063/. DOI: 10.1016/j.neuroimage.2013.01.038.
[11]
LEE K L, KESSLER D A, DEZONIE S, et al. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality[J/OL]. Eur J Radiol, 2023, 166: 111017 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37541181/. DOI: 10.1016/j.ejrad.2023.111017.
[12]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097.
[13]
TAJIMA T, AKAI H, SUGAWARA H, et al. Feasibility of accelerated whole-body diffusion-weighted imaging using a deep learning-based noise-reduction technique in patients with prostate cancer[J/OL]. Magn Reson Imaging, 2022, 92: 169-179 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35772583/. DOI: 10.1016/j.mri.2022.06.014.
[14]
JOHNSON P M, LIN D J, ZBONTAR J, et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI[J/OL]. Radiology, 2023, 307(2): e220425 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36648347/. DOI: 10.1148/radiol.220425.
[15]
ALMANSOUR H, HERRMANN J, GASSENMAIER S, et al. Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability[J/OL]. Radiology, 2023, 306(3): e212922 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/36318032/. DOI: 10.1148/radiol.212922.
[16]
MOURITS M P, PRUMMEL M F, WIERSINGA W M, et al. Clinical activity score as a guide in the management of patients with Graves' ophthalmopathy[J]. Clin Endocrinol, 1997, 47(1): 9-14. DOI: 10.1046/j.1365-2265.1997.2331047.x.
[17]
TORTORA F, PRUDENTE M, CIRILLO M, et al. Diagnostic accuracy of short-time inversion recovery sequence in Graves' Ophthalmopathy before and after prednisone treatment[J]. Neuroradiology, 2014, 56(5): 353-361. DOI: 10.1007/s00234-014-1332-4.
[18]
MAYER E, HERDMAN G, BURNETT C, et al. Serial STIR magnetic resonance imaging correlates with clinical score of activity in thyroid disease[J]. Eye, 2001, 15(Pt 3): 313-318. DOI: 10.1038/eye.2001.102.
[19]
ABDEL RAZEK A A, EL-HADIDY M, MOAWAD M E, et al. Performance of apparent diffusion coefficient of medial and lateral rectus muscles in Graves' orbitopathy[J]. Neuroradiol J, 2017, 30(3): 230-234. DOI: 10.1177/1971400917691993.
[20]
AN H, MA X D, PAN Z Y, et al. Qualitative and quantitative comparison of image quality between single-shot echo-planar and interleaved multi-shot echo-planar diffusion-weighted imaging in female pelvis[J]. Eur Radiol, 2020, 30(4): 1876-1884. DOI: 10.1007/s00330-019-06491-3.
[21]
BAI Y, PEI Y G, LIU W V, et al. MRI: evaluating the application of FOCUS-MUSE diffusion-weighted imaging in the pancreas in comparison with FOCUS, MUSE, and single-shot DWIs[J]. J Magn Reson Imaging, 2023, 57(4): 1156-1171. DOI: 10.1002/jmri.28382.
[22]
LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391.
[23]
PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5): 952-962.
[24]
SODICKSON D K, GRISWOLD M A, JAKOB P M, et al. Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging[J]. Magn Reson Med, 1999, 41(5): 1009-1022. DOI: 10.1002/(sici)1522-2594(199905)41:5<1009:aid-mrm21>3.0.co;2-4.
[25]
YASAKA K, AKAI H, KUNIMATSU A, et al. Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images[J]. Radiology, 2018, 287(1): 146-155. DOI: 10.1148/radiol.2017171928.
[26]
HIGAKI T, NAKAMURA Y, TATSUGAMI F, et al. Improvement of image quality at CT and MRI using deep learning[J]. Jpn J Radiol, 2019, 37(1): 73-80. DOI: 10.1007/s11604-018-0796-2.
[27]
CHEN Q, FANG S, YUCHEN Y, et al. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: improvement of image quality and impact on apparent diffusion coefficient value[J/OL]. Eur J Radiol, 2023, 168: 111149 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/37862927/. DOI: 10.1016/j.ejrad.2023.111149.
[28]
VAN DER VELDE N, HASSING H C, BAKKER B J, et al. Improvement of late gadolinium enhancement image quality using a deep learning-based reconstruction algorithm and its influence on myocardial scar quantification[J]. Eur Radiol, 2021, 31(6): 3846-3855. DOI: 10.1007/s00330-020-07461-w.
[29]
WANG X Z, MA J F, BHOSALE P, et al. Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging[J]. Abdom Radiol, 2021, 46(7): 3378-3386. DOI: 10.1007/s00261-021-02964-6.
[30]
SHU Z, XINZENG W, WILLIAM S, et al. Deep Learning-based image reconstruction improves CEST MRI [J/OL]. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021) [2024-01-09]. https://index.mirasmart.com/ISMRM2021/PDFfiles/1457.html.
[31]
KIM M, KIM H S, KIM H J, et al. Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting[J]. Radiology, 2021, 298(1): 114-122. DOI: 10.1148/radiol.2020200723.
[32]
ZOCHOWSKI K C, TAN E T, ARGENTIERI E C, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm[J/OL]. Magn Reson Imaging, 2022, 85: 186-192 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/34715288/. DOI: 10.1016/j.mri.2021.10.038.
[33]
FEENEY C, LINGAM R K, LEE V, et al. Non-EPI-DWI for detection, disease monitoring, and clinical decision-making in thyroid eye disease[J]. AJNR Am J Neuroradiol, 2020, 41(8): 1466-1472. DOI: 10.3174/ajnr.A6664.
[34]
BARTALENA L, KAHALY G J, BALDESCHI L, et al. The 2021 European Group on Graves' orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves' orbitopathy[J]. Eur J Endocrinol, 2021, 185(4): G43-G67. DOI: 10.1530/EJE-21-0479.
[35]
LINGAM R K, MUNDADA P, LEE V. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: an initial observational cohort study[J]. Orbit, 2018, 37(5): 325-330. DOI: 10.1080/01676830.2017.1423343.
[36]
POLITI L S, GODI C, CAMMARATA G, et al. Magnetic resonance imaging with diffusion-weighted imaging in the evaluation of thyroid-associated orbitopathy: getting below the tip of the iceberg[J]. Eur Radiol, 2014, 24(5): 1118-1126. DOI: 10.1007/s00330-014-3103-3.
[37]
WU Y, LAO Z, ZHANG S, et al. Evaluation of extraocular muscles in patients with thyroid associated ophthalmopathy using apparent diffusion coefficient measured by magnetic resonance imaging before and after radiation therapy[J]. Acta Radiol, 2022, 63(9): 1180-1186. DOI: 10.1177/02841851211034042.
[38]
LIU X T, SU Y, JIANG M D, et al. Application of magnetic resonance imaging in the evaluation of disease activity in Graves' ophthalmopathy[J]. Endocr Pract, 2021, 27(3): 198-205. DOI: 10.1016/j.eprac.2020.09.008.
[39]
HU H, CHEN L, ZHOU J, et al. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: added value from magnetization transfer imaging[J/OL]. Eur J Radiol, 2022, 151: 110295 [2024-01-09]. https://pubmed.ncbi.nlm.nih.gov/35405579/. DOI: 10.1016/j.ejrad.2022.110295.

PREV Study on the value of deep reconstruction technique in improving the image quality of magnetic resonance rectal cancer
NEXT Application of deep learning reconstruction techniques in optimizing breast MRI image quality
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn