Share:
Share this content in WeChat
X
Clinical Article
Changes of cerebral function in patients with early diabetic kidney disease based on regional homogeniety and seed-based functional connectivity
HE Miao  JI Bing  CHENG Liqing  XU Changhua  WANG Jian 

Cite this article as: HE M, JI B, CHENG L Q, et al. Changes of cerebral function in patients with early diabetic kidney disease based on regional homogeniety and seed-based functional connectivity[J]. Chin J Magn Reson Imaging, 2024, 15(10): 62-68. DOI:10.12015/issn.1674-8034.2024.10.011.


[Abstract] Objective To explore the impact of early diabetic kidney disease on cerebral function using regional homogeneity (ReHo) and seed-based functional connectivity (FC).Materials and Methods A total of 88 type 2 diabetes patients were prospectively recruited and divided into an early diabetic kidney disease group (n=39) and a diabetes without kidney disease group (n=49) based on the urinary albumin-to-creatinine ratio (UACR). The clinical symptoms for all participants were also collected and their cognitive scales were assessed using the Montreal Cognitive Assessment (MoCA) and the Mini-mental State Examination (MMSE). Moreover, resting state functional magnetic resonance imaging data were collected, and the cerebral functional differences between the two groups were analyzed using ReHo and seed-based FC. The partial correlation analysis was performed to identify the correlation of UACR, cognitive scores, and the brain functional imaging indices.Results In terms of cognitive performance, the scores of MoCA (t=-5.58, P<0.001) and MMSE (t=-2.68, P=0.016) in the early diabetic kidney disease group decreased significantly compared to diabetic patients without kidney disease. Regarding neuroimaging findings, significant differences in ReHo values were found in the right middle occipital gyrus (P<0.05, FWE correction). Using this region as a seed point for whole-brain FC analysis, it was found that there was an enhanced FC with the left thalamus (P<0.05, FWE correction). Partial correlation analysis results showed that in patients with early diabetic kidney disease, MoCA scores were positively correlated with ReHo values in the right middle occipital gyrus (r=0.349, P=0.043) and negatively correlated with FC values in the left thalamus (r=-0.464, P=0.006). Similarly, MMSE scores were positively correlated with ReHo values in the right middle occipital gyrus (r=0.367, P=0.033) and negatively correlated with FC values in the left thalamus (r=-0.455, P=0.007). Additionally, UACR was negatively correlated with MoCA scores (r=-0.449, P=0.008) and MMSE scores (r=-0.372, P=0.030). In contrast, there were no significant correlations among UACR, brain functional imaging indices, and cognitive scale scores in diabetes without kidney disease group.Conclusions This study reveals that patients with early diabetic kidney disease may experience neuro-functional disorders in the visually related brain regions, and the imbalance in the functional integration of these brain regions may exacerbate cognitive impairment.
[Keywords] diabetic nephropathy;cognitive impairment;regional homogeniety;functional connectivity;resting-state functional magnetic resonance imaging

HE Miao1   JI Bing1   CHENG Liqing2   XU Changhua1   WANG Jian1*  

1 7 T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

2 Department of Endocrinology and Metabolism, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

Corresponding author: WANG J, E-mail: wangjian@aifmri.com

Conflicts of interest   None.

Received  2024-06-21
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.011
Cite this article as: HE M, JI B, CHENG L Q, et al. Changes of cerebral function in patients with early diabetic kidney disease based on regional homogeniety and seed-based functional connectivity[J]. Chin J Magn Reson Imaging, 2024, 15(10): 62-68. DOI:10.12015/issn.1674-8034.2024.10.011.

[1]
LI S X, WANG Y, YING Y Y, et al. Independent and joint associations of BMI and waist circumference with the onset of type 2 diabetes mellitus in Chinese adults: prospective data linkage study[J/OL]. JMIR Public Health Surveill, 2023, 9: e39459 [2024-06-20]. https://pubmed.ncbi.nlm.nih.gov/36630180/. DOI: 10.2196/39459.
[2]
National Geriatric Medicine Center, Chinese Medical Association Diabetes Branch, Chinese Sports Science Society, et al. Guideline for eexercise therapy of type 2 diabetes mellitus in China(2024 edition)[J]. Chin Gen Pract, 2024, 27(30): 3709-3738. DOI: 10.12114/j.issn.1007-95722024.A0019.
[3]
NAVANEETHAN S D, ZOUNGAS S, CARAMORI M L, et al. Diabetes management in chronic kidney disease: synopsis of the KDIGO 2022 clinical practice guideline update[J]. Ann Intern Med, 2023, 176(3): 381-387. DOI: 10.7326/M22-2904.
[4]
KELLY D M, PINHEIRO A A, KOINI M, et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham heart study[J/OL]. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc, 2024 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/38565317/. DOI: 10.1093/ndt/gfae079.
[5]
WU H J, GONZALEZ VILLALOBOS R, YAO X, et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies[J]. Cell Metab, 2022, 34(7): 1064-1078.e6. DOI: 10.1016/j.cmet.2022.05.010.
[6]
CHEN P N, HU R Y, GAO L, et al. Abnormal degree centrality in end-stage renal disease (ESRD) patients with cognitive impairment: a resting-state functional MRI study[J]. Brain Imaging Behav, 2021, 15(3): 1170-1180. DOI: 10.1007/s11682-020-00317-3.
[7]
LIU Y R, QI X M, FANG J, et al. Correlation between alterations in white matter and cognitive function in patients with end-stage renal disease[J]. Acta Univ Med Anhui, 2022, 57(10): 1670-1675. DOI: 10.19405/j.cnki.issn1000-1492.2022.10.029.
[8]
QIAO Y Q, WANG Y L, BAI P R, et al. Dynamic functional connectivity of brain networks in end-stage renal disease patients[J]. Chin J Med Imag Technol, 2024, 40(7): 997-1002. DOI: 10.13929/j.issn.1003-3289.2024.07.009.
[9]
SINK K M, DIVERS J, WHITLOW C T, et al. Cerebral structural changes in diabetic kidney disease: African American-Diabetes Heart Study MIND[J]. Diabetes Care, 2015, 38(2): 206-212. DOI: 10.2337/dc14-1231.
[10]
KEMIK K, ADA E, ÇAVUŞOĞLU B, et al. Functional magnetic resonance imaging study during resting state and visual oddball task in mild cognitive impairment[J/OL]. CNS Neurosci Ther, 2024, 30(2): e14371 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37475197/. DOI: 10.1111/cns.14371.
[11]
LI X, LIU Q, CHEN Z N, et al. Abnormalities of regional brain activity in patients with schizophrenia: a longitudinal resting-state fMRI study[J]. Schizophr Bull, 2023, 49(5): 1336-1344. DOI: 10.1093/schbul/sbad054.
[12]
ALAHMADI A A S, ALOTAIBI N O, HAKAMI N Y, et al. Gender and cytoarchitecture differences: functional connectivity of the hippocampal sub-regions[J/OL]. Heliyon, 2023, 9(10): e20389 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37780771/. DOI: 10.1016/j.heliyon.2023.e20389.
[13]
FREEDMAN B I, SINK K M, HUGENSCHMIDT C E, et al. Associations of early kidney disease with brain magnetic resonance imaging and cognitive function in African Americans with type 2 diabetes mellitus[J]. Am J Kidney Dis, 2017, 70(5): 627-637. DOI: 10.1053/j.ajkd.2017.05.006.
[14]
Diabetes Society of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China(2020 edition)(Part 1)[J]. Chin J Pract Intern Med, 2021, 41(8): 668-695. DOI: 10.19538/j.nk2021080106.
[15]
SUN H Z, SONG X Y, LU S. Effect of BOLD-fMRI on early renal function in patients with type 2 diabetes mellitu[J]. Chin J Magn Reson Imag, 2023, 14(7): 61-66. DOI: 10.12015/issn.1674-8034.2023.07.011.
[16]
YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
[17]
LIU D Q, YAN C G, REN J J, et al. Using coherence to measure regional homogeneity of resting-state FMRI signal[J/OL]. Front Syst Neurosci, 2010, 4: 24 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/20589093/. DOI: 10.3389/fnsys.2010.00024.
[18]
NI S L, GAO S Z, LING C X, et al. Altered brain regional homogeneity is associated with cognitive dysfunction in first-episode drug-naive major depressive disorder: a resting-state fMRI study[J/OL]. J Affect Disord, 2023, 343: 102-108 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37797751/. DOI: 10.1016/j.jad.2023.10.003.
[19]
ZHU S R, XIE T, LV Z Y, et al. Hierarchies in visual pathway: functions and inspired artificial vision[J/OL]. Adv Mater, 2024, 36(6): e2301986 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37435995/. DOI: 10.1002/adma.202301986.
[20]
VILLOSLADA P, SOLANA E, ALBA-ARBALAT S, et al. Retinal damage and visual network reconfiguration defines visual function recovery in optic neuritis[J/OL]. Neurol Neuroimmunol Neuroinflamm, 2024, 11(6): e200288 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/39213469/. DOI: 10.1212/NXI.0000000000200288.
[21]
MA L L, WANG Y Y, YANG Z H, et al. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better?[J/OL]. Mil Med Res, 2020, 7(1): 7 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/32111253/. DOI: 10.1186/s40779-020-00238-8.
[22]
GE X M, LU Y, ZOU L, et al. Resting-state functional magnetic resonance imaging study in type 2 diabetic retinopathy using regional homogeneity analysis[J]. J Pract Radiol, 2018, 34(6): 831-834. DOI: 10.3969/j.issn.1002-1671.2018.06.004.
[23]
PAPADOPOULOU A, GAETANO L, PFISTER A, et al. Damage of the lateral geniculate nucleus in MS: assessing the missing node of the visual pathway[J/OL]. Neurology, 2019, 92(19): e2240-e2249 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/30971483/. DOI: 10.1212/WNL.0000000000007450.
[24]
HA M J, CHOI S Y, KIM M, et al. Diabetic nephropathy in type 2 diabetic retinopathy requiring panretinal photocoagulation[J]. Korean J Ophthalmol, 2019, 33(1): 46-53. DOI: 10.3341/kjo.2018.0034.
[25]
YUAN Q Q, LIANG X H, XUE C, et al. Altered anterior cingulate cortex subregional connectivity associated with cognitions for distinguishing the spectrum of pre-clinical Alzheimer's disease[J/OL]. Front Aging Neurosci, 2022, 14: 1035746 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/36570538/. DOI: 10.3389/fnagi.2022.1035746.
[26]
SHANG S A, ZHANG H Y, FENG Y, et al. Region-specific neurovascular decoupling associated with cognitive decline in Parkinson's disease[J/OL]. Front Aging Neurosci, 2021, 13: 770528 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/34867297/. DOI: 10.3389/fnagi.2021.770528.
[27]
JALAL B, CHAMBERLAIN S R, SAHAKIAN B J. Obsessive-compulsive disorder: Etiology, neuropathology, and cognitive dysfunction[J/OL]. Brain Behav, 2023, 13(6): e3000 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37137502/. DOI: 10.1002/brb3.3000.
[28]
CHEN Y J, MENG Z Y, ZHANG Z F, et al. The right thalamic glutamate level correlates with functional connectivity with right dorsal anterior cingulate cortex/middle occipital gyrus in unmedicated obsessive-compulsive disorder: a combined fMRI and 1H-MRS study[J]. Aust N Z J Psychiatry, 2019, 53(3): 207-218. DOI: 10.1177/0004867418806370.
[29]
XIONG Y, ZHANG S Q, SHI J J, et al. Application of neurite orientation dispersion and density imaging to characterize brain microstructural abnormalities in type-2 diabetics with mild cognitive impairment[J]. J Magn Reson Imaging, 2019, 50(3): 889-898. DOI: 10.1002/jmri.26687.
[30]
WEINER D E, BARTOLOMEI K, SCOTT T, et al. Albuminuria, cognitive functioning, and white matter hyperintensities in homebound Elders[J]. Am J Kidney Dis, 2009, 53(3): 438-447. DOI: 10.1053/j.ajkd.2008.08.022.
[31]
MURRAY A M, BARZILAY J I, LOVATO J F, et al. Biomarkers of renal function and cognitive impairment in patients with diabetes[J]. Diabetes Care, 2011, 34(8): 1827-1832. DOI: 10.2337/dc11-0186.
[32]
WANG F, MA W B, LIU Y W, et al. Mechanism of impaired cognitive function in patients with chronic kidney disease[J]. Acta Acad Med Sin, 2022, 44(6): 1082-1088. DOI: 10.3881/j.issn.1000.503X.14291.
[33]
GHOSHAL S, ALLRED N D, FREEDMAN B I. The contribution of kidney disease to cognitive impairment in patients with type 2 diabetes[J/OL]. Curr Diab Rep, 2020, 20(10): 49 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/32857243/. DOI: 10.1007/s11892-020-01333-9.
[34]
MAURICIO D, GRATACÒS M, FRANCH-NADAL J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 314 [2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/37968679/. DOI: 10.1186/s12933-023-02056-3.

PREV Imaging study of real-time fMRI neurofeedback training based on the nucleus ambiguus to improve obesity
NEXT Assessment of mechanisms of brain functional impairment in adolescent males with internet gaming disorder based on intra- and interhemispheric functional connectivity density
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn