Share:
Share this content in WeChat
X
Clinical Article
Resting-state functional MRI study on abnormal whole-brain functional connectivity of the left hippocampus in children with autism spectrum disorder
ZHANG Mengyao  SHEN Yu  YUE Xipeng  GE Yao  BAI Yan  WANG Meiyun 

Cite this article as: ZHANG M Y, SHEN Y, YUE X P, et al. Resting-state functional MRI study on abnormal whole-brain functional connectivity of the left hippocampus in children with autism spectrum disorder[J]. Chin J Magn Reson Imaging, 2024, 15(10): 80-85, 92. DOI:10.12015/issn.1674-8034.2024.10.014.


[Abstract] Objective To investigate the whole-brain functional connectivity (FC) of the left hippocampus in children with autism spectrum disorder (ASD).Materials and Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database, including 110 children with ASD and 182 typically developing (TD) controls. Seed-based resting-state FC analysis was performed using the left hippocampus as the seed region to assess whole-brain FC patterns. Two-sample t-tests were used to analyze FC differences between the ASD and TD groups, with a significance threshold of PFDR<0.05. Pearson correlation analysis was conducted to examine the relationship between abnormal FC values in the ASD group and scores on the Autism Diagnostic Observation Schedule (ADOS), with P<0.05 considered significant.Results Compared with the TD group, the FC between the left hippocampus and multiple brain regions, including right middle frontal gyrus, inferior frontal gyrus (orbital part), superior temporal gyrus, and middle temporal gyrus were enhanced in the ASD group. Correlation analysis showed that the FC values of the left hippocampus with the right middle frontal gyrus, bilateral inferior frontal gyrus (orbital part), right superior frontal gyrus (medial part), left caudate nucleus, left superior temporal gyrus, and left middle temporal gyrus were negatively correlated with ADOS_G_TOTAL scores (r values are -0.313, -0.395, -0.321, -0.303, -0.380, -0.366, -0.355, respectively, P<0.05). The FC values of the left hippocampus with the left inferior frontal gyrus (orbital part) and right superior parietal gyrus were negatively correlated with the ADOS_G_COMM score (r values are -0.339 and -0.316, both P<0.05).Conclusions Children with ASD exhibit significant abnormalities in whole-brain FC of the left hippocampus, which are significantly correlated with clinical manifestations. These findings not only highlight the critical role of left hippocampal FC in the pathogenesis of ASD but also provide a theoretical basis for future intervention strategies, promoting the development of more targeted treatment options. Moreover, this research offers new perspectives for understanding the neurobiological mechanisms underlying ASD.
[Keywords] autism spectrum disorder;magnetic resonance imaging;resting-state functional magnetic resonance imaging;functional connectivity;left hippocampus

ZHANG Mengyao1   SHEN Yu2   YUE Xipeng2   GE Yao2   BAI Yan2   WANG Meiyun2, 3*  

1 Department of Medical Imaging, Henan Provincial People's Hospital, Xinxiang Medical University, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Province People's Hospital, Zhengzhou 450003, China

3 Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou 450003, China

Corresponding author: WANG M Y, E-mail: mywang@zzu.edu.cn

Conflicts of interest   None.

Received  2024-06-17
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.014
Cite this article as: ZHANG M Y, SHEN Y, YUE X P, et al. Resting-state functional MRI study on abnormal whole-brain functional connectivity of the left hippocampus in children with autism spectrum disorder[J]. Chin J Magn Reson Imaging, 2024, 15(10): 80-85, 92. DOI:10.12015/issn.1674-8034.2024.10.014.

[1]
HIROTA T, KING B H. Autism spectrum disorder: A review[J]. JAMA, 2023, 329(2): 157-168. DOI: 10.1001/jama.2022.23661.
[2]
MAENNER M J, WARREN Z, WILLIAMS A R, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020[J]. MMWR Surveill Summ, 2023, 72(2): 1-14. DOI: 10.15585/mmwr.ss7202a1.
[3]
DONA O, HALL G B, NOSEWORTHY M D. Temporal fractal analysis of the rs-BOLD signal identifies brain abnormalities in autism spectrum disorder[J/OL]. PLoS One, 2017, 12(12): e0190081 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/29272297/. DOI: 10.1371/journal.pone.0190081.
[4]
BORRAS-FERRIS L, PEREZ-RAMIREZ U, MORATAL D. Link-level functional connectivity neuroalterations in autism spectrum disorder: A developmental resting-state fMRI study[J/OL]. Diagnostics(Basel), 2019, 9(1): 32 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/30901848/. DOI: 10.3390/diagnostics9010032.
[5]
YUE X, SHEN Y, LI Y, et al. Regional dynamic neuroimaging changes of adults with autism spectrum disorder[J]. Neuroscience, 2023, 523: 132-139. DOI: 10.1016/j.neuroscience.2023.04.016.
[6]
LORD C, ELSABBAGH M, BAIRD G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392(10146): 508-520. DOI: 10.1016/S0140-6736(18)31129-2.
[7]
SHOU X J, XU X J, ZENG X Z, et al. A volumetric and functional connectivity MRI study of brain arginine-vasopressin pathways in autistic children[J]. Neurosci Bull, 2017, 33(2): 130-142. DOI: 10.1007/s12264-017-0109-2.
[8]
BANKER S M, GU X, SCHILLER D, et al. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder[J]. Trends Neurosci, 2021, 44(10): 793-807. DOI: 10.1016/j.tins.2021.08.005.
[9]
BURGESS N, MAGUIRE E A, O'KEEFE J. The human hippocampus and spatial and episodic memory[J]. Neuron, 2002, 35(4): 625-641. DOI: 10.1016/s0896-6273(02)00830-9.
[10]
GENG F, XU W, RIGGINS T. Interactions between the hippocampus and fronto-parietal regions during memory encoding in early childhood[J]. Hippocampus, 2022, 32(2): 108-120. DOI: 10.1002/hipo.23380.
[11]
QUIAN QUIROGA R. How are memories stored in the human hippocampus?[J]. Trends Cogn Sci, 2021, 25(6): 425-426. DOI: 10.1016/j.tics.2021.03.006.
[12]
TANAKA K Z. Heterogeneous representations in the hippocampus[J]. Neurosci Res, 2021, 165: 1-5. DOI: 10.1016/j.neures.2020.05.002.
[13]
LONG J, LI H, LIU Y, et al. Insights into the structure and function of the hippocampus: implications for the pathophysiology and treatment of autism spectrum disorder[J/OL]. Front Psychiatry, 2024, 15: 1364858 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/38716113/. DOI: 10.3389/fpsyt.2024.1364858.
[14]
SUPEKAR K, UDDIN L Q, KHOUZAM A, et al. Brain hyperconnectivity in children with autism and its links to social deficits[J]. Cell Rep, 2013, 5(3): 738-747. DOI: 10.1016/j.celrep.2013.10.001.
[15]
KIPKEMOI P, SAVAGE J E, GONA J, et al. Evaluation of the psychometric properties of the social communication questionnaire in rural Kenya[J/OL]. J Autism Dev Disord, 2024 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/38816602/. DOI: 10.1007/s10803-024-06380-9.
[16]
MA L, YUAN T, LI W, et al. Dynamic functional connectivity alterations and their associated gene expression pattern in autism spectrum disorders[J/OL]. Front Neurosci, 2021, 15: 794151 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/35082596/. DOI: 10.3389/fnins.2021.794151.
[17]
CHEN C M, YANG P, WU M T, et al. Deriving and validating biomarkers associated with autism spectrum disorders from a large-scale resting-state database[J/OL]. Sci Rep, 2019, 9(1): 9043 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/31227769/. DOI: 10.1038/s41598-019-45465-9.
[18]
LI Y, ZHU Y, NGUCHU B A, et al. Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder[J]. Autism Res, 2020, 13(2): 230-243. DOI: 10.1002/aur.2212.
[19]
JIA X Z, WANG J, SUN H Y, et al. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing[J]. Sci Bull (Beijing), 2019, 64(14): 953-954. DOI: 10.1016/j.scib.2019.05.008.
[20]
HU Y, RAN J, QIAO R, et al. Identifying ADHD-Related Abnormal Functional Connectivity with a Graph Convolutional Neural Network[J/OL]. Neural Plast, 2024, 2024: 8862647 [2024-06-17] https://pubmed.ncbi.nlm.nih.gov/38715980/. DOI: 10.1155/2024/8862647.
[21]
XIONG S N, WAN N, GUO R, et al. Resting state functional magnetic resonance imaging observation on the characteristics of spontaneous brain activity and functional connectivity in Parkinson's diseases[J]. Chin J Magn Reson Imag, 2023, 14(1): 25-31. DOI: 10.12015/issn.1674-8034.2023.01.005.
[22]
HARIKUMAR A, EVANS D W, DOUGHERTY C C, et al. A review of the default mode network in autism spectrum disorders and attention deficit hyperactivity disorder[J]. Brain Connect, 2021, 11(4): 253-263. DOI: 10.1089/brain.2020.0865.
[23]
NATU V S, LIN J J, BURKS A, et al. Stimulation of the posterior cingulate cortex impairs episodic memory encoding[J]. J Neurosci, 2019, 39(36): 7173-7182. DOI: 10.1523/JNEUROSCI.0698-19.2019.
[24]
WANG S, TEPFER L J, TAREN A A, et al. Functional parcellation of the default mode network: a large-scale meta-analysis[J/OL]. Sci Rep, 2020, 10(1): 16096 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/32999307/. DOI: 10.1038/s41598-020-72317-8.
[25]
QIAN S, YANG Q, CAI C, et al. Spatial-temporal characteristics of brain activity in autism spectrum disorder based on hidden markov model and dynamic graph theory: A resting-state fMRI study[J/OL]. Brain Sci, 2024, 14(5): 507 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/38790485/. DOI: 10.3390/brainsci14050507.
[26]
LIU J, CHEN L, CHANG H, et al. Replicable patterns of memory impairments in children with autism and their links to hyperconnected brain circuits[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(11): 1113-1123. DOI: 10.1016/j.bpsc.2023.05.002.
[27]
HASHIMOTO T, YOKOTA S, MATSUZAKI Y, et al. Intrinsic hippocampal functional connectivity underlying rigid memory in children and adolescents with autism spectrum disorder: A case-control study[J]. Autism, 2021, 25(7): 1901-1912. DOI: 10.1177/13623613211004058.
[28]
LUAN Y, WANG C, JIAO Y, et al. Dysconnectivity of multiple resting-state networks associated with higher-order functions in sensorineural hearing loss[J/OL]. Front Neurosci, 2019, 13: 55 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/30804740/. DOI: 10.3389/fnins.2019.00055.
[29]
ORLOV N D, GIAMPIETRO V, O'DALY O, et al. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study[J/OL]. Transl Psychiatry, 2018, 8(1): 46 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/29430009/. DOI: 10.1038/s41398-017-0067-5.
[30]
BALGOVA E, DIVEICA V, WALBRIN J, et al. The role of the ventrolateral anterior temporal lobes in social cognition[J]. Hum Brain Mapp, 2022, 43(15): 4589-608. DOI: 10.1002/hbm.25976.
[31]
ZHANG Y J, HU H X, WANG L L, et al. Decoupling between hub-connected functional connectivity of the social brain network and real-world social network in individuals with social anhedonia[J/OL]. Psychiatry Res Neuroimaging, 2022, 326: 111528 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/36027707/. DOI: 10.1016/j.pscychresns.2022.111528.
[32]
MARRERO H, YAGUAL S N, GARCIA-MARCO E, et al. Enhancing memory for relationship actions by transcranial direct current stimulation of the superior temporal sulcus[J/OL]. Brain Sci, 2020, 10(8): 497 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/32751341/. DOI: 10.3390/brainsci10080497.
[33]
O'CONNELL K, MARSH A A, EDWARDS D F, et al. Emotion recognition impairments and social well-being following right-hemisphere stroke[J]. Neuropsychol Rehabil, 2022, 32(7): 1337-1355. DOI: 10.1080/09602011.2021.1888756.
[34]
FRAZIER I, LIN T, LIU P, et al. Age and intranasal oxytocin effects on trust-related decisions after breach of trust: Behavioral and brain evidence[J]. Psychol Aging, 2021, 36(1): 10-21. DOI: 10.1037/pag0000545.
[35]
GOLD B P, PEARCE M T, MCINTOSH A R, et al. Auditory and reward structures reflect the pleasure of musical expectancies during naturalistic listening[J/OL]. Front Neurosci, 2023, 17: 1209398 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/37928727/. DOI: 10.3389/fnins.2023.1209398.
[36]
SEDGEWICK F, HILL V, PELLICANO E. 'It's different for girls': Gender differences in the friendships and conflict of autistic and neurotypical adolescents[J]. Autism, 2019, 23(5): 1119-1132. DOI: 10.1177/1362361318794930.
[37]
XU J, WANG C, XU Z, et al. Specific functional connectivity patterns of middle temporal gyrus subregions in children and adults with autism spectrum disorder[J]. Autism Res, 2020, 13(3): 410-422. DOI: 10.1002/aur.2239.
[38]
D'CRUZ A M, MOSCONI M W, RAGOZZINO M E, et al. Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders[J/OL]. Transl Psychiatry, 2016, 6(10): e916 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/27727243/. DOI: 10.1038/tp.2016.161.
[39]
LEE Y, PARK B Y, JAMES O, et al. Autism spectrum disorder related functional connectivity changes in the language network in children, adolescents and adults[J/OL]. Front Hum Neurosci, 2017, 11: 418 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/28867997/. DOI: 10.3389/fnhum.2017.00418.
[40]
RING M, DERWENT C L T, GAIGG S B, et al. Structural learning difficulties implicate altered hippocampal functioning in adults with autism spectrum disorder[J]. J Abnorm Psychol, 2017, 126(6): 793-804. DOI: 10.1037/abn0000277.
[41]
KHANDAN KHADEM-REZA Z, SHAHRAM M A, ZARE H. Altered resting-state functional connectivity of the brain in children with autism spectrum disorder[J]. Radiol Phys Technol, 2023, 16(2): 284-291. DOI: 10.1007/s12194-023-00717-2.
[42]
SOLOMON M, RAGLAND J D, NIENDAM T A, et al. Atypical learning in autism spectrum disorders: A functional magnetic resonance imaging study of transitive inference[J]. J Am Acad Child Adolesc Psychiatry, 2015, 54(11): 947-955. DOI: 10.1016/j.jaac.2015.08.010.
[43]
BANASZKIEWICZ A, BOLA L, MATUSZEWSKI J, et al. The role of the superior parietal lobule in lexical processing of sign language: Insights from fMRI and TMS[J]. Cortex, 2021, 135: 240-254. DOI: 10.1016/j.cortex.2020.10.025.
[44]
BRIGGS R G, KHAN A B, CHAKRABORTY A R, et al. Anatomy and white matter connections of the superior frontal gyrus[J]. Clin Anat, 2020, 33(6): 823-832. DOI: 10.1002/ca.23523.
[45]
BI X A, ZHAO J, XU Q, et al. Abnormal functional connectivity of resting state network detection based on linear ICA analysis in autism spectrum disorder[J/OL]. Front Physiol, 2018, 9: 475 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/29867534/. DOI: 10.3389/fphys.2018.00475.
[46]
KOHLI J S, KINNEAR M K, MARTINDALE I A, et al. Regionally decreased gyrification in middle-aged adults with autism spectrum disorders[J/OL]. Neurology, 2019, 93(20): e1900-e1905 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/31604793/. DOI: 10.1212/WNL.0000000000008478.
[47]
BROWN T I, ROSS R S, TOBYNE S M, et al. Cooperative interactions between hippocampal and striatal systems support flexible navigation[J]. Neuroimage, 2012, 60(2): 1316-1330. DOI: 10.1016/j.neuroimage.2012.01.046.
[48]
HAN S, LI X X, WEI S, et al. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study[J/OL]. Cell Rep Med, 2023, 4(6): 101060 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/37263267/. DOI: 10.1016/j.xcrm.2023.101060.
[49]
LIU Q, ZHAO Y, ATTANTI S, et al. Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks[J/OL]. Nat Commun, 2024, 15(1): 1704 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/38402210/. DOI: 10.1038/s41467-024-45880-1.
[50]
WOON E P, BUTKOVICH L M, PELUSO A A, et al. Medial orbitofrontal neurotrophin systems integrate hippocampal input into outcome-specific value representations[J/OL]. Cell Rep, 2022, 40(11): 111334 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/36103822/. DOI: 10.1016/j.celrep.2022.111334.
[51]
WANG B A, VEISMANN M, BANERJEE A, et al. Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations[J/OL]. Nat Commun, 2023, 14(1): 3552 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/37322004/. DOI: 10.1038/s41467-023-38671-7.
[52]
LIM R Y, LEW W L, ANG K K. Review of EEG Affective Recognition with a Neuroscience Perspective[J/OL]. BrainSci, 2024, 14(4): 364 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/38672015/. DOI: 10.3390/brainsci14040364.
[53]
CHAI J, RUAN X, HUANG J. NLM-HS: Navigation Learning Model Based on a Hippocampal-Striatal Circuit for Explaining Navigation Mechanisms in Animal Brains[J/OL]. BrainSci, 2021, 11(6): 803 [2024-06-17]. https://pubmed.ncbi.nlm.nih.gov/34204482/. DOI: 10.3390/brainsci11060803.

PREV To study the brain function of patients with neuropsychiatric lupus based on the functional connectivity of large-scale brain networks
NEXT Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn