Share:
Share this content in WeChat
X
Clinical Article
Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy
DUAN Linyan  YU Fan  WANG Jingjuan  ZHANG Miao  LU Jie 

Cite this article as: DUAN L Y, YU F, WANG J J, et al. Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy[J]. Chin J Magn Reson Imaging, 2024, 15(10): 86-92. DOI:10.12015/issn.1674-8034.2024.10.015.


[Abstract] Objective To explore the efficacy of multidelay arterial spin labeling imaging (ASL) MRI in predicting long-term favorable neurological function after mechanical thrombectomy in patients with acute ischemic stroke (AIS).Materials and Methods Patients who received mechanical thrombectomy in the AIS Greenway Department of Xuanwu Hospital, Capital Medical University from June 2021 to November 2023 were retrospectively analyzed. All patients underwent noncontrast CT, CT perfusion (CTP), and CT angiography (CTA) before mechanical thrombectomy. Diffusion weighted imaging (DWI) and multidelay ASL MRI [post labeling delay (PLD)=1.00, 1.22, 1.48, 1.78, 2.15, 2.62, 3.32 s] were performed within 24 hours after surgery. Patients were divided into good perfusion group and poor perfusion group according to the volume of hypoperfusion in the affected side and unaffected side. Clinical data of the two groups were compared. The modified Rankin Scale (mRS) was used to evaluate the 90 d post-surgery neurological function prognosis of patients. 0~2 was defined as favorable function. The value of multidelay ASL MRI in predicting favorable neurological function at 90 d after surgery was analyzed by binary logistic regression model and receiver operating characteristic (ROC) curve.Results A total of 32 patients with AIS after mechanical thrombectomy were included, with 14 (43.8%) in good perfusion group and 18 (56.2%) in poor perfusion group. Compared to poor perfusion group, NIHSS7 d (4.10±3.76 vs. 7.80±4.51, P=0.02) was significantly lower in good perfusion group, ∆NIHSS (8.10±4.99 vs. 4.20±3.81, P=0.016) and the incidence of favorable neurological function at 90 d (92.9% vs. 50.0%, P=0.019) were significantly higher in good perfusion group. Of the 32 patients, 22 achieved favorable neurological function at 90 d (68.8%). After adjusting age, NIHSS at admission, pre-surgery ischemic penumbra, the binary logistic regression showed that 24-hour post-surgery good perfusion in multidelay ASL MRI was an independent predictor of favorable neurological function at 90 d (OR=14.246; 95% CI: 1.090-186.273, P=0.043). The area under ROC curve was 0.828 (95% CI: 0.666-0.990), the sensitivity was 75.0% and the specificity was 87.0%.Conclusions There were significant differences in short-term and long-term neurological function prognosis between the good perfusion group and the poor perfusion group. 24-hour post-surgery good perfusion in multidelay ASL MRI could be used as an independent predictor of the favorable neurological function at 90 d.
[Keywords] acute ischemic stroke;arterial spin labeling;magnetic resonance imaging;mechanical thrombectomy;prognosis;post-labeling delay

DUAN Linyan1, 2   YU Fan1, 2   WANG Jingjuan1, 2   ZHANG Miao1, 2   LU Jie1, 2*  

1 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China

Corresponding author: LU J, E-mail: imaginglu@hotmail.com

Conflicts of interest   None.

Received  2024-06-27
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.015
Cite this article as: DUAN L Y, YU F, WANG J J, et al. Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy[J]. Chin J Magn Reson Imaging, 2024, 15(10): 86-92. DOI:10.12015/issn.1674-8034.2024.10.015.

[1]
TU W J, ZHAO Z, YIN P, et al. Estimated burden of stroke in China in 2020[J/OL]. JAMA Netw Open, 2023, 6(3): 231455 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36862407/ DOI: 10.1001/jamanetworkopen.2023.1455.
[2]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[3]
SAINI V, GUADA L, YAVAGAL D R. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20Suppl 2): S6-S16. DOI: 10.1212/WNL.0000000000012781.
[4]
KAESMACHER J, CAVALCANTE F, KAPPELHOF M, et al. Time to treatment with intravenous thrombolysis before thrombectomy and functional outcomes in acute ischemic stroke: a meta-analysis[J]. JAMA, 2024, 331(9): 764-777. DOI: 10.1001/jama.2024.0589.
[5]
KIM H J, ROH H G. Imaging in acute anterior circulation ischemic stroke: current and future[J]. Neurointervention, 2022, 17(1): 2-17. DOI: 10.5469/neuroint.2021.00465.
[6]
GOYAL M, MENON B K, van ZWAM W H, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials[J]. Lancet, 2016, 387(10029): 1723-1731. DOI: 10.1016/S0140-6736(16)00163-X.
[7]
SARRAJ A, HASSAN A E, ABRAHAM M G, et al. Endovascular thrombectomy for large ischemic stroke across ischemic injury and penumbra profiles[J]. JAMA, 2024, 331(9): 750-763. DOI: 10.1001/jama.2024.0572.
[8]
del ZOPPO G J, MABUCHI T. Cerebral microvessel responses to focal ischemia[J]. J Cereb Blood Flow Metab, 2003, 23(8): 879-894. DOI: 10.1097/01.WCB.0000078322.96027.78.
[9]
MUBARAK F, FATIMA H, MUSTAFA M S, et al. Assessment precision of CT perfusion imaging in the detection of acute ischemic stroke: a systematic review and meta-analysis[J/OL]. Cureus, 2023, 15(8): 44396 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37791142/. DOI: 10.7759/cureus.44396.
[10]
FERNANDEZ-RODICIO S, FERRO-COSTAS G, SAMPEDRO-VIANA A, et al. Perfusion-weighted software written in Python for DSC-MRI analysis[J/OL]. Front Neuroinform, 2023, 17: 1202156 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37593674/ DOI: 10.3389/fninf.2023.1202156.
[11]
CALAMANTE F, GANESAN V, KIRKHAM F J, et al. MR perfusion imaging in moyamoya syndrome: Potential implications for clinical evaluation of occlusive cerebrovascular disease[J]. Stroke, 2001, 32(12): 2810-2816. DOI: 10.1161/hs1201.099893.
[12]
LIU S, FAN D, ZANG F, et al. Collateral circulation detected by arterial spin labeling predicts outcome in acute ischemic stroke[J]. Acta Neurol Scand, 2022, 146(5): 635-642. DOI: 10.1111/ane.13694.
[13]
YOO R E, YUN T J, YOO D H, et al. Monitoring cerebral blood flow change through use of arterial spin labelling in acute ischaemic stroke patients after intra-arterial thrombectomy[J]. Eur Radiol, 2018, 28(8): 3276-3284. DOI: 10.1007/s00330-018-5319-0.
[14]
LU S S, CAO Y Z, SU C Q, et al. Hyperperfusion on arterial spin labeling MRI predicts the 90‐day functional outcome after mechanical thrombectomy in ischemic stroke[J]. J Magn Reson Imaging, 2021, 53(6): 1815-1822. DOI: 10.1002/jmri.27455.
[15]
WOODS J G, CHAPPELL M A, OKELL T W. Designing and comparing optimized pseudo-continuous Arterial Spin Labeling protocols for measurement of cerebral blood flow[J/OL]. Neuroimage, 2020, 223: 117246 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/32853814/. DOI: 10.1016/j.neuroimage.2020.117246.
[16]
ZHAO M Y, ARMINDO R D, GAUDEN A J, et al. Revascularization improves vascular hemodynamics - a study assessing cerebrovascular reserve and transit time in Moyamoya patients using MRI[J]. J Cereb Blood Flow Metab, 2023, 43(2_suppl): 138-151. DOI: 10.1177/0271678X221140343.
[17]
KOSAKA N, KIMURA H. Editorial for "arterial transit time–based multidelay combination strategy improves arterial spin labeling MRI cerebral blood flow measurement accuracy in severe steno‐occlusive diseases"[J]. J Magn Reson Imaging, 2022, 55(1): 188-189. DOI: 10.1002/jmri.27901.
[18]
Chinese Society of Neurology, Chinese Stroke Society. Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2018[J]. Chinese Journal of Neurology, 2018, 51(9): 666-682. DOI: 10.3760/cma.j.issn.1006-7876.2018.09.004.
[19]
NIE X, LENG X, MIAO Z, et al. Clinically ineffective reperfusion after endovascular therapy in acute ischemic stroke[J]. Stroke, 2023, 54(3): 873-881. DOI: 10.1161/STROKEAHA.122.038466.
[20]
ERMINE C M, BIVARD A, PARSONS M W, et al. The ischemic penumbra: From concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509. DOI: 10.1177/1747493020975229.
[21]
BRACARD S, DUCROCQ X, MAS J L, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial[J]. Lancet Neurol, 2016, 15(11): 1138-1147. DOI: 10.1016/S1474-4422(16)30177-6.
[22]
POWERS W J, RABINSTEIN A A, ACKERSON T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2019, 50(12): 344-418. DOI: 10.1161/STR.0000000000000211.
[23]
YAN C, YU F, ZHANG Y, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke[J]. Stroke, 2023, 54(4): 1037-1045. DOI: 10.1161/STROKEAHA.122.040759.
[24]
RAVULA S, PATIL C, KUMAR KS P, et al. A study to evaluate the role of three-dimensional pseudo-continuous arterial spin labelling in acute ischemic stroke[J]. Cureus, 2023, 15(8): 44030 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/37746491/. DOI: 10.7759/cureus.44030.
[25]
WONG E C. An introduction to ASL labeling techniques[J]. J Magn Reson Imaging, 2014, 40(1): 1-10. DOI: 10.1002/jmri.24565.
[26]
ANDRE J B, OZTEK M A, ANZAI Y, et al. Evaluation of 3-dimensional stereotactic surface projection rendering of arterial spin labeling data in a clinical cohort[J]. J Neuroimaging, 2023, 33(6): 933-940. DOI: 10.1111/jon.13153.
[27]
ZHANG Z, PU Y, MI D, et al. Cerebral hemodynamic evaluation after cerebral recanalization therapy for acute ischemic stroke[J/OL]. Front Neurol, 2019, 10: 719 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/31333570/. DOI: 10.3389/fneur.2019.00719.
[28]
NAM K W, KIM C K, YOON B W, et al. Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke[J/OL]. Sci Rep, 2022, 12(1): 1456 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/35087157/. DOI: 10.1038/s41598-022-05465-8.
[29]
AMEMIYA S, WATANABE Y, TAKEI N, et al. Arterial transit time-based multidelay combination strategy improves arterial spin labeling cerebral blood flow measurement accuracy in severe steno-occlusive diseases[J]. J Magn Reson Imaging, 2022, 55(1): 178-187. DOI: 10.1002/jmri.27823.
[30]
GUO Y, DOU W, WANG X, et al. Can combined high-resolution vessel wall imaging and multiple post-labeling delay 3D pseudo-continuous arterial spin labeling differentiate moyamoya disease from atherosclerotic moyamoya syndrome?[J/OL]. Eur J Radiol, 2023, 169: 111184 [2024-05-16]. https://linkinghub.elsevier.com/retrieve/pii/S0720-048X(23)00498-9. DOI: 10.1016/j.ejrad.2023.111184.
[31]
LINDNER T, BOLAR D S, CHTEN E A, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
[32]
KIRCHOFF-TORRES K F, Bakradze E. Cerebral hyperperfusion syndrome after carotid revascularization and acute ischemic stroke[J/OL]. Curr Pain Headache Rep, 2018, 22(4): 24 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/29556806/. DOI: 10.1007/s11916-018-0678-4.
[33]
YU J, ZHANG J, CHEN J. Arterialized vein immediately after direct bypass surgery indicates cerebral hyperperfusion syndrome in moyamoya disease[J]. Stroke, 2024, 55(1): 3-4. DOI: 10.1161/STROKEAHA.123.045471.
[34]
SHI Z, WU L, WANG Y, et al. Risk factors of postoperative cerebral hyperperfusion syndrome and its relationship with clinical prognosis in adult patients with moyamoya disease[J/OL]. Chin Neurosurg J, 2023, 9(1): 10 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/37013602/. DOI: 10.1186/s41016-023-00321-8.
[35]
FAROOQ M U, GOSHGARIAN C, MIN J, et al. Pathophysiology and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting[J/OL]. Exp Transl Stroke Med, 2016, 8(1): 7 [2024-05-16]. https://pubmed.ncbi.nlm.nih.gov/27602202/. DOI: 10.1186/s13231-016-0021-2.
[36]
WU L, LIU Y, ZHU L, et al. MRI arterial spin labeling in evaluating hemorrhagic transformation following endovascular recanalization of subacute ischemic stroke[J/OL]. Front Neurosci, 2023, 17: 1105816 [2024-05-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36937682/. DOI: 10.3389/fnins.2023.1105816.
[37]
FAN X, ZUO Z, LIN T, et al. Arterial transit artifacts on arterial spin labeling MRI can predict cerebral. hyperperfusion after carotid endarterectomy: an initial study[J]. Eur Radiol, 2022, 32(9): 6145-6157. DOI: 10.1007/s00330-022-08755-x.

PREV Resting-state functional MRI study on abnormal whole-brain functional connectivity of the left hippocampus in children with autism spectrum disorder
NEXT Analysis of thalamic glutamate-glutamine complex metabolism and related factors in patients with vestibular migraine
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn