Share:
Share this content in WeChat
X
Clinical Article
Analysis of thalamic glutamate-glutamine complex metabolism and related factors in patients with vestibular migraine
WANG Weitao  LI Xiaozhen  ZHONG Liqun  HUANG Lixian  XU Dan  SHE Wenlong  ZHANG Daopei  ZHANG Huailiang  CHEN Zhengguang 

Cite this article as: WANG W T, LI X Z, ZHONG L Q, et al. Analysis of thalamic glutamate-glutamine complex metabolism and related factors in patients with vestibular migraine[J]. Chin J Magn Reson Imaging, 2024, 15(10): 93-97, 114. DOI:10.12015/issn.1674-8034.2024.10.016.


[Abstract] Objective To explore the metabolic status and bilateral thalamic glutamate-glutamine complex (Glx) in patients with vestibular migraine (vestibular migraine, VM).Materials and Methods Twenty VM patients and 20 healthy controls were selected to detect thalamic Glx in VM group and healthy controls by magnetic resonance spectroscopy (MRS) imaging technology. Relevant data between two groups to analyze the metabolic differences of Glx and their risk factors.Results The healthy controls (n=20) had 2 513.60 ± 998.20 and the left thalamic Glx were 2 386.50 ± 862.03. The right thalamic Glx metabolic values in the VM group (n=20) were 3 712.00 ± 980.80 and 3 350.40 ± 944.20 for the left thalamic Glx. The t-test analysis showed statistical differences in Glx values in the left and left thalamus in the VM group compared with healthy controls (P<0.05). Spearman correlation analysis showed duration of disease, diabetes, hypertension, sleep disturbance, headache and no statistically significant correlation with VM thalamic Glx; Pearson correlation analysis showed that vertigo disorder scale (DHI), SAS anxiety scale and SDS depression scale showed no statistically significant correlation with VM thalamic Glx, and age was statistically associated with left thalamic Glx (r=0.570, P<0.001).Conclusions VM patients had higher bilateral thalamic Glx values than healthy controls. Age was the relevant contributing factor for the elevated Glx in the left thalamus.
[Keywords] vestibular migraine;thalamic;glutamate-glutamine;magnetic resonance spectroscopy;magnetic resonance imaging;cerebral metabolism

WANG Weitao1   LI Xiaozhen2*   ZHONG Liqun3   HUANG Lixian3   XU Dan3   SHE Wenlong3   ZHANG Daopei4   ZHANG Huailiang4   CHEN Zhengguang2*  

1 Beijing University of Chinese Medicine First Clinical College of Medicine, Beijing 100700, China

2 Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

3 Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

4 Department of Neurology, the First Affiliated Hospital of Henan University of Chinese Medicine/Center for Diagnosis and Treatment of Vertigo in Henan Province/Institute of Vertigo in Henan University of Chinese Medicine, Zhengzhou 450000, China

Corresponding author: CHEN Z G, E-mail: guangchen999@sina.com LI X Z, E-mail: lixiaozhen79@163.com

Conflicts of interest   None.

Received  2024-03-12
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.016
Cite this article as: WANG W T, LI X Z, ZHONG L Q, et al. Analysis of thalamic glutamate-glutamine complex metabolism and related factors in patients with vestibular migraine[J]. Chin J Magn Reson Imaging, 2024, 15(10): 93-97, 114. DOI:10.12015/issn.1674-8034.2024.10.016.

[1]
BEH S C. Vestibular migraine[J]. Curr Neurol Neurosci Rep, 2022, 22(10): 601-609. DOI: 10.1007/s11910-022-01222-6.
[2]
FORMEISTER E J, RIZK H G, KOHN M A, et al. The epidemiology of vestibular migraine: A population-based survey study[J]. Otol Neurotol, 2018, 39(8): 1037-1044. DOI: 10.1097/MAO.0000000000001900.
[3]
DIETERICH M, OBERMANN M, CELEBISOY N. Vestibular migraine: the most frequent entity of episodic vertigo[J]. J Neurol, 2016, 263Suppl 1: S82-S89. DOI: 10.1007/s00415-015-7905-2.
[4]
SOHN J H. Recent advances in the understanding of vestibular migraine[J/OL]. Behav Neurol, 2016, 2016: 1801845 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/27821976/. DOI: 10.1155/2016/1801845.
[5]
SMYTH D, BRITTON Z, MURDIN L, et al. Vestibular migraine treatment: a comprehensive practical review[J]. Brain, 2022, 145(11): 3741-3754. DOI: 10.1093/brain/awac264.
[6]
ÇELEBISOY N, AK A K, ATAÇ C, et al. Comparison of clinical features in patients with vestibular migraine and migraine[J]. J Neurol, 2023, 270(7): 3567-3573. DOI: 10.1007/s00415-023-11677-3.
[7]
CERIANI C E J. Vestibular migraine pathophysiology and treatment: a narrative review[J]. Curr Pain Headache Rep, 2024, 28(2): 47-54. DOI: 10.1007/s11916-023-01182-7.
[8]
SHIN J H, KIM Y K, KIM H J, et al. Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings[J]. Cephalalgia, 2014, 34(1): 58-67. DOI: 10.1177/0333102413498940.
[9]
RUSSO A, MARCELLI V, ESPOSITO F, et al. Abnormal thalamic function in patients with vestibular migraine[J]. Neurology, 2014, 82(23): 2120-2126. DOI: 10.1212/WNL.0000000000000496.
[10]
CONRAD J, BAIER B, EBERLE L, et al. Network Architecture of Verticality Processing in the Human Thalamus[J]. Ann Neurol, 2023, 94(1): 133-145. DOI: 10.1002/ana.26652.
[11]
BRANDT T, DIETERICH M. Thalamocortical network: a core structure for integrative multimodal vestibular functions[J]. Curr Opin Neurol, 2019, 32(1): 154-116. DOI: 10.1097/WCO.0000000000000638.
[12]
WANG W T. Preliminary exploration of genomics of vestibular migraine and summary of diagnosis and treatment experience of Professor Zhang Huailiang[D]. Zhengzhou: Henan University of Traditional Chinese Medicine, 2021.
[13]
MADJI HOUNOUM B, BLASCO H, COQUE E, et al. The metabolic disturbances of motoneurons exposed to glutamate[J]. Mol Neurobiol, 2018, 55(10): 7669-7676. DOI: 10.1007/s12035-018-0945-8.
[14]
KONČEKOVA J, KOTOROVA K, GOTTLIEB M, et al. Remote ischaemic preconditioning accelerates brain to blood glutamate efflux via EAATs-mediated transport[J]. Neurochem Res, 2023, 48(12): 3560-3570. DOI: 10.1007/s11064-023-04002-x.
[15]
QIU B, BOUDKER O. Symport and antiport mechanisms of human glutamate transporters[J/OL]. Nat Commun, 2023, 14(1): 2579 [2024-03-12]. https://pubmed.ncbi.nlm.nih.gov/37142617/. DOI: 10.1038/s41467-023-38120-5.
[16]
SHARMA A, KAZIM S F, LARSON C S, et al. Divergent roles of astrocytic versus neuronal EAAT2 deficiency on cognition and overlap with aging and Alzheimer's molecular signatures[J]. Proc Natl Acad Sci U S A, 2019, 116(43): 21800-21811. DOI: 10.1073/pnas.1903566116.
[17]
GOLLION C. Cortical excitability in migraine: Contributions of magnetic resonance imaging[J]. Revue neurologique, 2021, 177(7): 809-815. DOI: 10.1016/j.neurol.2021.07.008.
[18]
KRITIS A A, STAMOULA E G, PANISKAKI K A, et al. Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study[J/OL]. Front Cell Neurosci, 2015, 9: 91 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/25852482/. DOI: 10.3389/fncel.2015.00091.
[19]
PARKER P D, SURYAVANSHI P, MELONE M, et al. Non-canonical glutamate signaling in a genetic model of migraine with aura[J]. Neuron, 2021, 109(4): 611-628.e8 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/33321071/. DOI: 10.1016/j.neuron.2020.11.018.
[20]
TOLNER E A, CHEN S P, EIKERMANN-HAERTER K. Current understanding of cortical structure and function in migraine[J]. Cephalalgia, 2019, 39(13): 1683-1699. DOI: 10.1177/0333102419840643.
[21]
BRENNAN K C, PIETROBON D. A systems neuroscience approach to migraine[J]. Neuron, 2018, 97(5): 1004-1021. DOI: 10.1016/j.neuron.2018.01.029.
[22]
PADOVAN L, BECKER-BENSE S, FLANAGIN V L, et al. Anxiety and physical impairment in patients with central vestibular disorders[J]. J Neurol, 2023, 270(11): 5589-5599. DOI: 10.1007/s00415-023-11871-3.
[23]
HILBER P. The role of the cerebellar and vestibular networks in anxiety disorders and depression: the internal model hypothesis[J]. Cerebellum, 2022, 21(5): 791-800. DOI: 10.1007/s12311-022-01400-9.
[24]
CHEN C H, NEWMAN L N, STARK A P, et al. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain[J]. Nat Neurosci, 2023, 26(11): 1929-1941. DOI: 10.1038/s41593-023-01462-w.
[25]
DUMAN R S, SANACORA G, KRYSTAL J H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments[J]. Neuron, 2019, 102(1): 75-90. DOI: 10.1016/j.neuron.2019.03.013.
[26]
XIONG X, DAI L, CHEN W, et al. Dynamics and concordance alterations of regional brain function indices in vestibular migraine: a resting-state fMRI study[J/OL]. J Headache Pain, 2024, 25(1): 1 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/38178029/. DOI: 10.1186/s10194-023-01705-y.
[27]
FERINI-STRAMBI L, GALBIATI A, COMBI R. Sleep disorder-related headaches[J]. Neurol Sci, 2019, 40(Suppl 1): 107-113. DOI: 10.1007/s10072-019-03837-z.
[28]
LIN Y K, LIN G Y, LEE J T, et al. Associations between sleep quality and migraine frequency: A cross-sectional case-control study[J/OL]. Medicine (Baltimore), 2016, 95(17): e3554 [2024-02-20]. DOI: 10.1097/MD.0000000000003554.
[29]
TIAN Y, CHEN X, XU D, et al. Connectivity within the default mode network mediates the association between chronotype and sleep quality[J/OL]. J Sleep Res, 2020, 29(5): e12948 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/31793113/. DOI: 10.1111/jsr.12948.
[30]
HAN L, LU J, CHEN C, et al. Altered functional connectivity within and between resting-state networks in patients with vestibular migraine[J]. Neuroradiology, 2023, 65(3): 591-598. DOI: 10.1007/s00234-022-03102-9.
[31]
YUAN X, LI X, XU Y, et al. Microstructural changes of the vestibulocochlear nerve in patients with Ménière's disease using diffusion tensor imaging[J/OL]. Front Neurol, 2022, 13: 915826 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/33348528/. DOI: 10.3389/fneur.2022.915826.
[32]
TODD A C, HARDINGHAM G E. The regulation of astrocytic glutamate transporters in health and neurodegenerative diseases[J/OL]. Int J Mol Sci, 2020, 21(24): 9607 [2024-02-20]. https://pubmed.ncbi.nlm.nih.gov/33348528/. DOI: 10.3390/ijms21249607.
[33]
SÜDHOF T C. Synaptic neurexin complexes: A molecular code for the logic of neural circuits[J]. Cell, 2017, 171(4): 745-769. DOI: 10.1016/j.cell.2017.10.024.
[34]
OBERMANN M, WURTHMANN S, STEINBERG B S, et al. Central vestibular system modulation in vestibular migraine[J]. Cephalalgia, 2014, 34(13): 1053-1061. DOI: 10.1016/j.cell.2017.10.024.
[35]
PIOT L, HEROVEN C, BOSSI S, et al. GluD1 binds GABA and controls inhibitory plasticity[J]. Science, 2023, 382(6677): 1389-1394. DOI: 10.1126/science.adf3406.
[36]
CHIU C Q, BARBERIS A, HIGLEY M J. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity[J]. Nat Rev Neurosci, 2019, 20(5): 272-281. DOI: 10.1038/s41583-019-0141-5.
[37]
WANG W T, LI X Z, CHEN Z G, et al. Imaging study of vestibular migraine and progress of diagnosis and treatment of traditional Chinese medicine[J]. Chinese Journal of Imaging of Integrated Traditional Chinese and Western Medicine, 2022, 20(5): 438-440. DOI: 10.3969/j.issn.1672-0512.2022.05.009.
[38]
GUO Y, LI R Y, LU F Q, et al. Progress in multimodal fMRI in vestibular migraine[J]. Chin J Magn Reson Imaging, 2021, 12(4): 86-88. DOI: 10.12015/issn.1674-8034.2021.04.021.

PREV Efficacy of multidelay arterial spin labeling MRI in predicting long-term favorable neurological function in acute ischemic stroke patients after mechanical thrombectomy
NEXT The study of MRI perfusion imaging global and local radiomics in the prediction of outcome in acute stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn