Share:
Share this content in WeChat
X
Clinical Article
Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone
LIN Yanshun  ZHANG Li  ZHENG Pengxiang  GAO Yongqing  ZHAO Yingying  XU Wei 

Cite this article as: LIN Y S, ZHANG L, ZHENG P X, et al. Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone[J]. Chin J Magn Reson Imaging, 2024, 15(10): 109-114. DOI:10.12015/issn.1674-8034.2024.10.019.


[Abstract] Objective To assess the value of prostate imaging-reporting and data system version 2.1 (PI-RADS v2.1) and multi-parametric magnetic resonance imaging (mp-MRI) derived biomarkers in detecting clinically significant prostate cancer (csPCa) in transition zone.Materials and Methods A retrospective analysis was conducted on clinical and imaging data from patients with transition zone prostate disease who underwent mp-MRI and pathological biopsy at our hospital from January 2020 to February 2024. MRI images were evaluated by a chief physician with 8 years of experience in prostate imaging, using PI-RADS v2.1 to assess the images and outline lesion contours. This provided MRI characteristics including 3D diameter, relative lesion volume (calculated by dividing the lesion volume by the prostate volume), sphericity, flatness, and surface volume ratio. Logistic analysis was used to determine the relationship between PI-RADS scores, multiparametric MRI-derived biomarkers, and the detection of csPCa in the transition zone.Results The study included 403 patients. The detection rates of csPCa for PI-RADS categories 1 (n=25), 2 (n=119), 3 (n=130), 4 (n=43), and 5 (n=86) were 0.00%, 0.00%, 3.85%, 32.56%, and 70.93%, respectively. The differences in csPCa detection rates among PI-RADS categories 3, 4, and 5 were statistically significant (P<0.001). Predictive factors for csPCa in the transition zone included serum prostate-specific antigen (PSA) [OR=1.05 (95% CI: 1.00-1.10); P=0.047], PI-RADS score [OR=8.92 (95% CI: 2.94-27.13); P<0.001], maximum two-dimensional diameter [OR=0.84 (95% CI: 0.71-0.98); P=0.046], and grid volume [OR=1.00 (95% CI: 1.00-1.00); P=0.041].Conclusions Serum PSA, PI-RADS score, lesion diameter, and grid volume are independent predictors of clinically significant prostate cancer in the transition zone.
[Keywords] clinically significant prostate cancer;transitional zone;derived marker;magnetic resonance imaging;prostate imaging reporting and data system

LIN Yanshun1   ZHANG Li1   ZHENG Pengxiang2   GAO Yongqing1   ZHAO Yingying1   XU Wei1*  

1 Department of Radiology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing 350300, China

2 Department of Urology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing 350300, China

Corresponding author: XU W, E-mail: 1584016959@qq.com

Conflicts of interest   None.

Received  2024-04-10
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.019
Cite this article as: LIN Y S, ZHANG L, ZHENG P X, et al. Evaluation of the value of PI-RADS v2.1 and multiparametric MRI-derived biomarkers in detecting clinically significant prostate cancer in transition zone[J]. Chin J Magn Reson Imaging, 2024, 15(10): 109-114. DOI:10.12015/issn.1674-8034.2024.10.019.

[1]
LIM C S, ABREU-GOMEZ J, CARRION I, et al. Prevalence of prostate cancer in PI-RADS version 2.1 transition zone atypical nodules upgraded by abnormal DWI: correlation with MRI-directed TRUS-guided targeted biopsy[J]. AJR Am J Roentgenol, 2021, 216(3): 683-690. DOI: 10.2214/AJR.20.23932.
[2]
LIU Y Y, WANG S, XU G, et al. Effectiveness and accuracy of MRI-ultrasound fusion targeted biopsy based on PI-RADS v2.1 category in transition/peripheral zone of the prostate[J]. J Magn Reson Imaging, 2023, 58(3): 709-717. DOI: 10.1002/jmri.28614.
[3]
PARK K J, CHOI S H, KIM M H, et al. Performance of prostate imaging reporting and data system version 2.1 for diagnosis of prostate cancer: a systematic review and meta-analysis[J]. J Magn Reson Imaging, 2021, 54(1): 103-112. DOI: 10.1002/jmri.27546.
[4]
KIM H S, KWON G Y, KIM M J, et al. Prostate imaging-reporting and data system: comparison of the diagnostic performance between version 2.0 and 2.1 for prostatic peripheral zone[J]. Korean J Radiol, 2021, 22(7): 1100-1109. DOI: 10.3348/kjr.2020.0837.
[5]
BJURLIN M A, CARROLL P R, EGGENER S, et al. Update of the standard operating procedure on the use of multiparametric magnetic resonance imaging for the diagnosis, staging and management of prostate cancer[J]. J Urol, 2020, 203(4): 706-712. DOI: 10.1097/JU.0000000000000617.
[6]
EXTERKATE L, WEGELIN O, BARENTSZ J O, et al. Is there still a need for repeated systematic biopsies in patients with previous negative biopsies in the era of magnetic resonance imaging-targeted biopsies of the prostate?[J]. Eur Urol Oncol, 2020, 3(2): 216-223. DOI: 10.1016/j.euo.2019.06.005.
[7]
ROUVIÈRE O, PUECH P, RENARD-PENNA R, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study[J]. Lancet Oncol, 2019, 20(1): 100-109. DOI: 10.1016/S1470-2045(18)30569-2.
[8]
AHDOOT M, WILBUR A R, REESE S E, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis[J]. N Engl J Med, 2020, 382(10): 917-928. DOI: 10.1056/NEJMoa1910038.
[9]
KIM C H, KIM C K, PARK J J, et al. Yield of concurrent systemic biopsy during MRI-targeted biopsy according to Prostate Imaging Reporting and Data System version 2 in patients with suspected prostate cancer[J]. Eur Radiol, 2021, 31(3): 1667-1675. DOI: 10.1007/s00330-020-07167-z.
[10]
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
[11]
WEINREB J C. Organized chaos: does PI-RADS version 2 work in the transition zone?[J]. Radiology, 2018, 288(2): 492-494. DOI: 10.1148/radiol.2018180123.
[12]
LEE C H, VELLAYAPPAN B, TAN C H. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis[J/OL]. Br J Radiol, 2022, 95(1131): 20210509 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978226/. DOI: 10.1259/bjr.20210509.
[13]
BOROFSKY S, GEORGE A K, GAUR S, et al. What are we missing? false-negative cancers at multiparametric MR imaging of the prostate[J]. Radiology, 2018, 286(1): 186-195. DOI: 10.1148/radiol.2017152877.
[14]
KIM N, KIM S, PRABHU V, et al. Comparison of prostate imaging and reporting data system V2.0 and V2.1 for evaluation of transition zone lesions: a 5-reader 202-patient analysis[J]. J Comput Assist Tomogr, 2022, 46(4): 523-529. DOI: 10.1097/RCT.0000000000001313.
[15]
CHIU P K F, LEOW J J, CHIANG C H, et al. Prostate health index density outperforms prostate-specific antigen density in the diagnosis of clinically significant prostate cancer in equivocal magnetic resonance imaging of the prostate: a multicenter evaluation[J]. J Urol, 2023, 210(1): 88-98. DOI: 10.1097/JU.0000000000003450.
[16]
THAI J N, NARAYANAN H A, GEORGE A K, et al. Validation of PI-RADS version 2 in transition zone lesions for the detection of prostate cancer[J]. Radiology, 2018, 288(2): 485-491. DOI: 10.1148/radiol.2018170425.
[17]
OERTHER B, ENGEL H, BAMBERG F, et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level[J]. Prostate Cancer Prostatic Dis, 2022, 25(2): 256-263. DOI: 10.1038/s41391-021-00417-1.
[18]
KWE J, BAUNACKE M, BOEHM K, et al. PI-RADS upgrading as the strongest predictor for the presence of clinically significant prostate cancer in patients with initial PI-RADS-3 lesions[J/OL]. World J Urol, 2024, 42(1): 84 [2024-02-11]. https://link.springer.com/article/10.1007/s00345-024-04944-z. DOI: 10.1007/s00345-024-04776-x.
[19]
BOUYÉ S, POTIRON E, PUECH P, et al. Transition zone and anterior stromal prostate cancers: zone of origin and intraprostatic patterns of spread at histopathology[J]. Prostate, 2009, 69(1): 105-113. DOI: 10.1002/pros.20859.
[20]
WANG J F, WU P J, LIU S J, et al. Analysis of factors related to the efficacy of Tamsulosin monotherapy for overactive bladder symptoms in benign prostatic hyperplasia patients with the prostate volume 40 ml[J]. Chin J Geriatr, 2023, 42(1): 62-66. DOI: 10.3760/cma.j.issn.0254-9026.2023.01.012.
[21]
HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050775/. DOI: 10.1016/j.eclinm.2023.101899.
[22]
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imaging, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
[23]
YANG S, ZHAO W L, TAN S X, et al. Combining clinical and MRI data to manage PI-RADS 3 lesions and reduce excessive biopsy[J]. Transl Androl Urol, 2020, 9(3): 1252-1261. DOI: 10.21037/tau-19-755.
[24]
PADHANI A R, BARENTSZ J, VILLEIRS G, et al. PI-RADS steering committee: the PI-RADS multiparametric MRI and MRI-directed biopsy pathway[J]. Radiology, 2019, 292(2): 464-474. DOI: 10.1148/radiol.2019182946.
[25]
RUDOLPH M M, BAUR A D J, CASH H, et al. Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer[J/OL]. Sci Rep, 2020, 10(1): 15982 [2024-02-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525456/. DOI: 10.1038/s41598-020-72544-z.
[26]
LEI Y, LI T J, GU P, et al. Combining prostate-specific antigen density with prostate imaging reporting and data system score version 2.1 to improve detection of clinically significant prostate cancer: A retrospective study[J/OL]. Front Oncol, 2022, 12: 992032 [2024-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539128/. DOI: 10.3389/fonc.2022.992032.
[27]
JIANG X M, CHEN Y H, DONG S C, et al. Diagnostic efficacy of PI-RADS v2.1 in combination with prostate-specific antigen density for clinically significant prostate cancer[J]. J Dalian Med Univ, 2024, 46(2): 138-143. DOI: 10.11724/jdmu.2024.02.08.
[28]
XU S S, LIU X B, ZHANG X Q, et al. Prostate zones and tumor morphological parameters on magnetic resonance imaging for predicting the tumor-stage diagnosis of prostate cancer[J]. Diagn Interv Radiol, 2023, 29(6): 753-760. DOI: 10.4274/dir.2023.232284.
[29]
YUK H D, BYUN S S, HONG S K, et al. The tumor volume after radical prostatectomy and its clinical impact on the prognosis of patients with localized prostate cancer[J/OL]. Sci Rep, 2022, 12(1): 6003 [2024-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994775/. DOI: 10.1038/s41598-022-09431-2.
[30]
ABREU-GOMEZ J, WALKER D, ALOTAIBI T, et al. Effect of observation size and apparent diffusion coefficient (ADC) value in PI-RADS v2.1 assessment category 4 and 5 observations compared to adverse pathological outcomes[J]. Eur Radiol, 2020, 30(8): 4251-4261. DOI: 10.1007/s00330-020-06725-9.
[31]
ROSENKRANTZ A B, BABB J S, TANEJA S S, et al. Proposed adjustments to PI-RADS version 2 decision rules: impact on prostate cancer detection[J]. Radiology, 2017, 283(1): 119-129. DOI: 10.1148/radiol.2016161124.
[32]
ZHAO Y Y, XIONG M L, LIU Y F, et al. Magnetic resonance imaging radiomics-based prediction of clinically significant prostate cancer in equivocal PI-RADS 3 lesions in the transitional zone[J/OL]. Front Oncol, 2023, 13: 1247682 [2024-01-24]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701731/. DOI: 10.3389/fonc.2023.1247682.
[33]
KRAUSS W, FREY J, LAGERLÖF J H, et al. Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer[J]. Acta Radiol, 2024, 65(3): 307-317. DOI: 10.1177/02841851231216555.
[34]
BRANCATO V, DI COSTANZO G, BASSO L, et al. Assessment of DCE utility for PCa diagnosis using PI-RADS v2.1: effects on diagnostic accuracy and reproducibility[J/OL]. Diagnostics, 2020, 10(3): 164 [2023-12-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151226/. DOI: 10.3390/diagnostics10030164.
[35]
LI P, LI Y, XU J, et al. Differential diagnosis of MRI apparent diffusion coefficient for high-risk prostate cancer in the transition zone and its correlation with pathological grading group[J]. Chin J Magn Reson Imag, 2024, 15(2): 77-82, 89. DOI: 10.12015/issn.1674-8034.2024.02.011.

PREV Prediction based on CE-T1WI omics and pathological parameter models research on postoperative recurrence of glioma
NEXT Application of the IDEAL-IQ sequence in the quantitative evaluation of fat infiltration in the rotator cuff muscle group after supraspinatus tendon injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn