Share:
Share this content in WeChat
X
Clinical Article
The value of the magnetic resonance mDIXON-Quant technique in the assessment of alterations in the proton density fat fraction of the infrapatellar fat pad in knee osteoarthritis
ZHAO Baogen  WANG Xiaoying  WANG Shuo  ZHANG Yujin  JI Gang  ZHANG Li 

Cite this article as: ZHAO B G, WANG X Y, WANG S, et al. The value of the magnetic resonance mDIXON-Quant technique in the assessment of alterations in the proton density fat fraction of the infrapatellar fat pad in knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2024, 15(10): 123-128. DOI:10.12015/issn.1674-8034.2024.10.021.


[Abstract] Objective Analysis of alterations in the proton density fat fraction (PDFF) of the infrapatellar fat pad using magnetic resonance-based mDIXON-Quant technique in patients with knee osteoarthritis (KOA), and its correlation with KOA severity.Materials and Methods Prospectively recruited 44 patients with KOA, performing conventional MRI and mDIXON-Quant sequence scans on a total of 70 knees, to measure the PDFF of the infrapatellar fat pad in KOA patients. The severity of the subjects' KOA was evaluated using the whole-organ magnetic resonance imaging score (WORMS). The correlation between the PDFF of the infrapatellar fat pad and the independent scores of the 11 features of the WORMS, and the total scores of each knee were analysed.Results The PDFF of the infrapatellar fat pad was found to be negatively correlated with a number of variables, including the total knee WORMS scores, articular cartilage integrity, marginal osteophytes, subarticular bone attrition, subarticular bone marrow abnormality, subarticular cysts, medial and lateral meniscal integrity, loose bodies, periarticular cysts/bursitis, anterior and posterior cruciate ligament integrity, and synovitis/effusion WORMS (r=-0.94, -0.85, -0.83, -0.80, -0.72, -0.52, -0.54, -0.39, -0.27, -0.27, -0.24, P<0.05). There was no significant correlation with the medial and lateral collateral ligament integrity (r=0.27, P=0.826). The inter-observer agreement was found to be excellent, with an ICC value of 0.793 (P<0.001), and a 95% confidence interval of (0.667-0.875).Conclusions Magnetic resonance mDIXON-Quant technology enables quantitative evaluation of changes in the PDFF of the infrapatellar fat pad in patients with KOA. The PDFF of the infrapatellar fat pad decreases with the progression of KOA severity, suggesting its potential as an objective indicator to reflect the severity of KOA.
[Keywords] knee joint;osteoarthritis;mDIXON-Quant;infrapatellar fat pad;magnetic resonance imaging

ZHAO Baogen   WANG Xiaoying   WANG Shuo   ZHANG Yujin   JI Gang   ZHANG Li*  

Department of Radiology and Nuclear Medicine, the First Hospital of Hebei Medical University, Shijiazhuang 050011, China

Corresponding author: ZHANG L, E-mail:2501799636@qq.com

Conflicts of interest   None.

Received  2024-04-23
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.021
Cite this article as: ZHAO B G, WANG X Y, WANG S, et al. The value of the magnetic resonance mDIXON-Quant technique in the assessment of alterations in the proton density fat fraction of the infrapatellar fat pad in knee osteoarthritis[J]. Chin J Magn Reson Imaging, 2024, 15(10): 123-128. DOI:10.12015/issn.1674-8034.2024.10.021.

[1]
2021 OSTEOARTHRITIS COLLABORATORS G B D. Global, regional, and national burden of osteoarthritis, 1990-2020 and toprojections 2050: a systematic analysis for the Global Burden of Disease Study 2021[J/OL]. Lancet Rheumatol, 2023, 5(9): e508-e522 [2024-02-16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477960/#. DOI: 10.1016/S2665-9913(23)00163-7.
[2]
YE Z C, LIN J, HE C, et al. Polydatin protects against articular cartilage degeneration by regulating autophagy mediated by the AMPK/mTOR signaling pathway[J]. Histol Histopathol, 2024, 39(11): 1505-1515. DOI: 10.14670/HH-18-739.
[3]
CHEN L, ZHOU H J, GONG Y C, et al. How do muscle function and quality affect the progression of KOA? A narrative review[J]. Orthop Surg, 2024, 16(4): 802-810. DOI: 10.1111/os.14022.
[4]
TANIGUCHI M, UMEHARA J, YAMAGATA M, et al. Understanding muscle coordination during gait based on muscle synergy and its association with symptoms in patients with knee osteoarthritis[J]. Clin Rheumatol, 2024, 43(2): 743-752. DOI: 10.1007/s10067-023-06852-w.
[5]
TÖRNBLOM M, BREMANDER A, AILI K, et al. Development of radiographic knee osteoarthritis and the associations to radiographic changes and baseline variables in individuals with knee pain: a 2-year longitudinal study[J/OL]. BMJ Open, 2024, 14(3): e081999 [2024-04-17]. https://bmjopen.bmj.com/content/14/3/e081999. DOI: 10.1136/bmjopen-2023-081999.
[6]
MACE J, BHATTI W, ANAND S. Infrapatellar fat pad syndrome: a review of anatomy, function, treatment and dynamics[J]. Acta Orthop Belg, 2016, 82(1): 94-101.
[7]
FONTANELLA C G, BELLUZZI E, ROSSATO M, et al. Quantitative MRI analysis of infrapatellar and suprapatellar fat pads in normal controls, moderate and end-stage osteoarthritis[J]. Ann Anat, 2019, 221: 108-114. DOI: 10.1016/j.aanat.2018.09.007.
[8]
HAN W Y, AITKEN D, ZHENG S, et al. Association between quantitatively measured infrapatellar fat pad high signal-intensity alteration and magnetic resonance imaging-assessed progression of knee osteoarthritis[J]. Arthritis Care Res, 2019, 71(5): 638-646. DOI: 10.1002/acr.23713.
[9]
RUAN G F, LU S L, ZHANG Y, et al. Quantitatively measured infrapatellar fat pad signal intensity alteration is associated with joint effusion-synovitis in knee osteoarthritis[J/OL]. Curr Med Imaging, 2023 [2024-02-17]. https://doi.org/10.2174/1573405619666230310093402. DOI: 10.2174/1573405619666230310093402.
[10]
BALLEGAARD C, RIIS R G C, BLIDDAL H, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study[J]. Osteoarthritis Cartilage, 2014, 22(7): 933-940. DOI: 10.1016/j.joca.2014.04.018.
[11]
DE VRIES B A, VAN DER HEIJDEN R A, POOT D H J, et al. Quantitative DCE-MRI demonstrates increased blood perfusion in Hoffa's fat pad signal abnormalities in knee osteoarthritis, but not in patellofemoral pain[J]. Eur Radiol, 2020, 30(6): 3401-3408. DOI: 10.1007/s00330-020-06671-6.
[12]
VAN DER HEIJDEN R A, DE VRIES B A, POOT D H J, et al. Quantitative volume and dynamic contrast-enhanced MRI derived perfusion of the infrapatellar fat pad in patellofemoral pain[J]. Quant Imaging Med Surg, 2021, 11(1): 133-142. DOI: 10.21037/qims-20-441.
[13]
FISCHER M A. From morphology to biomarker: quantitative texture analysis of the infrapatellar fat pad reliably predicts knee osteoarthritis[J]. Radiology, 2022, 304(3): 622-623. DOI: 10.1148/radiol.221094.
[14]
WANG Z, WU Q, ZHANG L N. Research progress of clinical application of mDixon-Quant technology[J]. J Pract Radiol, 2024, 40(1): 154-157. DOI: 10.3969/j.issn.1002-1671.2024.01.036.
[15]
WANG X X, PAN X J, ZHOU W Q, et al. Quantification of hepatic steatosis on dual-energy CT in comparison with MRI mDIXON-quant sequence in breast cancer[J]. J Comput Assist Tomogr, 2024, 48(1): 64-71. DOI: 10.1097/RCT.0000000000001529.
[16]
WANG Y, JU Y, AN Q, et al. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease[J/OL]. Front Endocrinol, 2023, 14: 1187042 [2024-02-17]. https://doi.org/10.3389/fendo.2023.1187042. DOI: 10.3389/fendo.2023.1187042.
[17]
FAN Z, WANG T, WANG Y, et al. Risk factors in patients with low back pain under 40 years old: quantitative analysis based on computed tomography and magnetic resonance imaging mDIXON-quant[J]. J Pain Res, 2023, 16: 3417-3431. DOI: 10.2147/JPR.S426488.
[18]
KLAUKE F, ZÄNKER K, SCHENK P, et al. Comparison of the zonal distribution of calcium salt density and fat marrow in bone-healthy and osteoporotic sacra: an image data analysis using quantitative computed tomography and magnetic resonance imaging[J]. Eur J Trauma Emerg Surg, 2024, 50(4): 1765-1773. DOI: 10.1007/s00068-024-02507-w.
[19]
KLEIN-WIERINGA I R, DE LANGE-BROKAAR B J E, YUSUF E, et al. Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad[J]. J Rheumatol, 2016, 43(4): 771-778. DOI: 10.3899/jrheum.151068.
[20]
TANG S A, YAO L T, RUAN J Z, et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology[J/OL]. Sci Transl Med, 2024, 16(731): eadf4590 [2024-06-30]. https://www.science.org/doi/10.1126/scitranslmed.adf4590. DOI: 10.1126/scitranslmed.adf4590.
[21]
PETERFY C G, GUERMAZI A, ZAIM S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis Cartilage, 2004, 12(3): 177-190. DOI: 10.1016/j.joca.2003.11.003.
[22]
ATUKORALA I, KWOH C K, GUERMAZI A, et al. Synovitis in knee osteoarthritis: a precursor of disease?[J]. Ann Rheum Dis, 2016, 75(2): 390-395. DOI: 10.1136/annrheumdis-2014-205894.
[23]
FELSON D T, NIU J, NEOGI T, et al. Synovitis and the risk of knee osteoarthritis: the MOST Study[J]. Osteoarthritis Cartilage, 2016, 24(3): 458-464. DOI: 10.1016/j.joca.2015.09.013.
[24]
ILIA I, CIORDAS P D, NITUSCA D, et al. Analysis of the level of adiponectin and selected cytokines in patients with knee osteoarthritis[J/OL]. Medicina, 2024, 60(4): 571 [2024-06-01]. https://pubmed.ncbi.nlm.nih.gov/38674217/. DOI: 10.3390/medicina60040571.
[25]
KLEIN-WIERINGA I R, KLOPPENBURG M, BASTIAANSEN- JENNISKENS Y M, et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype[J]. Ann Rheum Dis, 2011, 70(5): 851-857. DOI: 10.1136/ard.2010.140046.
[26]
ZHANG J Y, LI K X, QIU X Y. Exploring causal correlations between inflammatory cytokines and knee osteoarthritis: a two-sample Mendelian randomization[J/OL]. Front Immunol, 2024, 15: 1362012 [2024-05-17]. https://www.frontiersin.org/articles/10.3389/fimmu.2024.1362012/full. DOI: 10.3389/fimmu.2024.1362012.
[27]
DE BOER T N, VAN SPIL W E, HUISMAN A M, et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage[J]. Osteoarthritis Cartilage, 2012, 20(8): 846-853. DOI: 10.1016/j.joca.2012.05.002.
[28]
HAN W Y, AITKEN D, ZHU Z H, et al. Hypointense signals in the infrapatellar fat pad assessed by magnetic resonance imaging are associated with knee symptoms and structure in older adults: a cohort study[J/OL]. Arthritis Res Ther, 2016, 18(1): 234 [2024-05-17]. https://pubmed.ncbi.nlm.nih.gov/27729069/. DOI: 10.1186/s13075-016-1130-y.
[29]
AMESBURY R, RAGATI-HAGHI H, MATHIESSEN A, et al. Gender differences in patterns of cartilage loss: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage, 2024, 32(9): 1149-1153. DOI: 10.1016/j.joca.2024.04.010.
[30]
PONNUSAMY R, ZHANG M, WANG Y, et al. Automatic segmentation of bone marrow lesions on MRI using a deep learning method[J/OL]. Bioengineering, 2024, 11(4): 374 [2024-05-17]. https://pubmed.ncbi.nlm.nih.gov/38671795/. DOI: 10.3390/bioengineering11040374.
[31]
LUO P, WANG Q Y, CAO P H, et al. The association between anterior cruciate ligament degeneration and incident knee osteoarthritis: data from the osteoarthritis initiative[J]. J Orthop Translat, 2024, 44: 1-8. DOI: 10.1016/j.jot.2023.09.005.
[32]
GUO H L, LI Q Y, ZHANG Z R, et al. Better clinical outcomes and return to sport rates with additional medial meniscus root tear repair in high tibial osteotomy for medial compartmental knee osteoarthritis[J]. Knee Surg Sports Traumatol Arthrosc, 2024, 32(7): 1753-1765. DOI: 10.1002/ksa.12180.
[33]
ABRAMOFF B, CALDERA F E. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311. DOI: 10.1016/j.mcna.2019.10.007.
[34]
CEN H, YAN Q R, MENG T, et al. Quantitative infrapatellar fat pad signal intensity alteration as an imaging biomarker of knee osteoarthritis progression[J/OL]. RMD Open, 2023, 9(1): e002565 [2024-02-17]. https://doi.org/10.1136/rmdopen-2022-002565. DOI: 10.1136/rmdopen-2022-002565.
[35]
MARTEL-PELLETIER J, TARDIF G, PELLETIER J P. An open debate on the morphological measurement methodologies of the infrapatellar fat pad to determine its association with the osteoarthritis process[J]. Curr Rheumatol Rep, 2022, 24(3): 76-80. DOI: 10.1007/s11926-022-01057-7.
[36]
VAN DEN LANGENBERGH J, BASTIAANSEN-JENNISKENS Y M, VAN OSCH G J V M, et al. PLOD2 gene expression in infrapatellar fat pad is correlated with fat mass in obese patients with end-stage knee osteoarthritis[J/OL]. Osteoarthr Cartil Open, 2024, 6(2): 100469 [2024-04-20]. https://doi.org/10.1016/j.ocarto.2024.100469. DOI: 10.1016/j.ocarto.2024.100469.
[37]
HAN W Y, AITKEN D, ZHU Z H, et al. Signal intensity alteration in the infrapatellar fat pad at baseline for the prediction of knee symptoms and structure in older adults: a cohort study[J]. Ann Rheum Dis, 2016, 75(10): 1783-1788. DOI: 10.1136/annrheumdis-2015-208360.
[38]
DRIBAN J B, LO G H, LEE J Y, et al. Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss[J/OL]. BMC Musculoskelet Disord, 2011, 12: 217 [2024-04-20]. https://doi.org/10.1016/j.ocarto.2024.100469. DOI: 10.1186/1471-2474-12-217.
[39]
JARRAYA M, GUERMAZI A, FELSON D T, et al. Is superolateral Hoffa's fat pad hyperintensity a marker of local patellofemoral joint disease? - The MOST study[J]. Osteoarthritis Cartilage, 2017, 25(9): 1459-1467. DOI: 10.1016/j.joca.2017.05.020.
[40]
CHUCKPAIWONG B, CHARLES H C, KRAUS V B, et al. Age-associated increases in the size of the infrapatellar fat pad in knee osteoarthritis as measured by 3T MRI[J]. J Orthop Res, 2010, 28(9): 1149-1154. DOI: 10.1002/jor.21125.

PREV Application of the IDEAL-IQ sequence in the quantitative evaluation of fat infiltration in the rotator cuff muscle group after supraspinatus tendon injury
NEXT Quantitative MRI study of calf muscle area and fat content in patients with chronic ankle instability
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn