Share:
Share this content in WeChat
X
Clinical Article
Study on the correlation between DWI, IVIM, and DCE-MRI parameters and Ki-67 expression in soft tissue tumors
ZHANG Yu  CHAI Rongxin  WANG Dezhi 

Cite this article as: ZHANG Y, CHAI R X, WANG D Z. Study on the correlation between DWI, IVIM, and DCE-MRI parameters and Ki-67 expression in soft tissue tumors[J]. Chin J Magn Reson Imaging, 2024, 15(10): 136-140, 147. DOI:10.12015/issn.1674-8034.2024.10.023.


[Abstract] Objective To investigate the correlation between diffusion weighted imaging (DWI), intravoxel incoherent motion (IVIM), and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters and the expression of Ki-67 in soft tissue tumors.Materials and Methods A retrospective study included 56 patients with pathologically confirmed soft tissue tumors, divided into a high expression group (n=22) with a Ki-67 index of >20% and a low expression group (n=34) with a Ki-67 index of ≤20% according to the Ki-67 index. The study compared DWI, IVIM, and DCE-MRI parameters between the groups, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), rate constant (Kep), volume transfer constant (Ktrans), and extracellular extravascular space volume fraction (Ve), and analyzed their correlation with Ki-67 index. It also applied the Pearson correlation coefficient to analyze the significant correlation of parameters with the Ki-67 index that showed significant differences between the groups.Results The ADC and D values were significantly higher in the low Ki-67 expression group than in the high expression group, while Ktrans and Kep values were significantly lower (P<0.05 for all). ADC and D values showed a negative correlation with Ki-67 index (r=-0.637, -0.625, P<0.001), whereas Ktrans showed a positive correlation (r=0.263, P=0.050). ADC had the highest area under the curve (AUC) in distinguishing Ki-67 expression status in soft tissue tumors, at 0.920 (0.845-0.994).Conclusions ADC, D, Ktrans, and Kep can effectively predict Ki-67 expression in soft tissue tumors, with ADC and D being the best parameters for predicting the Ki-67 expression status, providing assistance in clinical diagnosis, treatment, and prognosis assessment.
[Keywords] soft tissue tumors;intravoxel incoherent motion;dynamic contrast-enhanced magnetic resonance imaging;Ki-67;magnetic resonance imaging

ZHANG Yu1   CHAI Rongxin2   WANG Dezhi1*  

1 Department of Medical imaging, Zhucheng people's hospital, Weifang 262200, China

2 Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China

Corresponding author: WANG D Z, E-mail: wang6189_cn@163.com

Conflicts of interest   None.

Received  2024-04-24
Accepted  2024-09-10
DOI: 10.12015/issn.1674-8034.2024.10.023
Cite this article as: ZHANG Y, CHAI R X, WANG D Z. Study on the correlation between DWI, IVIM, and DCE-MRI parameters and Ki-67 expression in soft tissue tumors[J]. Chin J Magn Reson Imaging, 2024, 15(10): 136-140, 147. DOI:10.12015/issn.1674-8034.2024.10.023.

[1]
SBARAGLIA M, BELLAN E, DEI TOS A P. The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives[J]. Pathologica, 2021, 113(2): 70-84. DOI: 10.32074/1591-951X-213.
[2]
BANSAL A, GOYAL S, GOYAL A, et al. WHO classification of soft tissue tumours 2020: an update and simplified approach for radiologists[J/OL]. Eur J Radiol, 2021, 143: 109937[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/34547634/. DOI: 10.1016/j.ejrad.2021.109937.
[3]
SORBYE S W, KILVAER T K, VALKOV A, et al. Prognostic impact of Jab1, p16, p21, p62, Ki67 and Skp2 in soft tissue sarcomas[J/OL]. PLoS One, 2012, 7(10): e47068 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/23071715/. DOI: 10.1371/journal.pone.0047068.
[4]
YANG Y, ZHANG L Y, WANG T, et al. MRI fat-saturated T2-weighted radiomics model for identifying the ki-67 index of soft tissue sarcomas[J]. J Magn Reson Imaging, 2023, 58(2): 534-545. DOI: 10.1002/jmri.28518.
[5]
ROSA S L. Diagnostic, prognostic, and predictive role of Ki67 proliferative index in neuroendocrine and endocrine neoplasms: past, present, and future[J]. Endocr Pathol, 2023, 34(1): 79-97. DOI: 10.1007/s12022-023-09755-3.
[6]
WANG P P, LI H, HU Y, et al. Relationship between ultrasound features and ki-67 labeling index of soft tissue sarcoma[J/OL]. Front Oncol, 2021, 11: 687878 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/34262871/. DOI: 10.3389/fonc.2021.687878.
[7]
YERUSHALMI R, WOODS R, RAVDIN P M, et al. Ki67 in breast cancer: prognostic and predictive potential[J]. Lancet Oncol, 2010, 11(2): 174-183. DOI: 10.1016/S1470-2045(09)70262-1.
[8]
LEE J H, YOON Y C, SEO S W, et al. Soft tissue sarcoma: DWI and DCE-MRI parameters correlate with Ki-67 labeling index[J]. Eur Radiol, 2020, 30(2): 914-924. DOI: 10.1007/s00330-019-06445-9.
[9]
HOOS A, STOJADINOVIC A, MASTORIDES S, et al. High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas[J]. Cancer, 2001, 92(4): 869-874. DOI: 10.1002/1097-0142(20010815)92:4<869:aid-cncr1395>3.0.co;2-u.
[10]
CHEN T J, LIU C, WANG S, et al. Application status and controversy of puncture biopsy for bone and soft tissue tumors[J]. J Pract Orthop, 2023, 29(6): 522-526. DOI: 10.13795/j.cnki.sgkz.2023.06.009.
[11]
LAI C, LONG J R, LARSEN B T, et al. Percutaneous biopsy of musculoskeletal tumors and the potential for needle tract seeding: technical considerations, current controversies, and outcomes[J]. Skeletal Radiol, 2023, 52(3): 505-516. DOI: 10.1007/s00256-022-04187-2.
[12]
MA W T, ZHU Y H, WEI Z K, et al. Dynamic contrast enhanced-MRI and diffusion weighted imaging parameters for predicting microsatellite instability of colorectal cancer[J]. Chin J Med Imag Technol, 2023, 39(10): 1526-1530. DOI: 10.13929/j.issn.1003-3289.2023.10.017.
[13]
LE BIHAN D. What can we see with IVIM MRI?[J]. NeuroImage, 2019, 187: 56-67. DOI: 10.1016/j.neuroimage.2017.12.062.
[14]
ZHAN J, HAO D, WANG D, et al. Standard diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MRI of musculoskeletal tumours: correlations with Ki67 proliferation status[J/OL]. Clin Radiol, 2021, 76(12): 941.e11-941.e18 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/34579866/. DOI: 10.1016/j.crad.2021.09.004.
[15]
LEE S K, JEE W H, JUNG C K, et al. Multiparametric quantitative analysis of tumor perfusion and diffusion with 3T MRI: differentiation between benign and malignant soft tissue tumors[J/OL]. Br J Radiol, 2020, 93(1115): 20191035 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/32649224/. DOI: 10.1259/bjr.20191035.
[16]
CHOI Y J, LEE I S, SONG Y S, et al. Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors[J]. J Magn Reson Imaging, 2019, 50(3): 798-809. DOI: 10.1002/jmri.26607.
[17]
ZHANG K, DAI Y, LIU Y J, et al. Soft tissue sarcoma: IVIM and DKI parameters correlate with Ki-67 labeling index on direct comparison of MRI and histopathological slices[J]. Eur Radiol, 2022, 32(8): 5659-5668.
[18]
LI X, LIU Y, TAO J, et al. Value of intravoxel incoherent motion and diffusion kurtosis imaging in predicting peritumoural infiltration of soft-tissue sarcoma: a prospective study based on MRI-histopathology comparisons[J]. Clin Radiol, 2021, 76(7): 532-539. DOI: 10.1016/j.crad.2021.02.014.
[19]
LIM H K, JEE W H, JUNG J Y, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T[J/OL]. Br J Radiol, 2018, 91(1082): 20170636 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/29144153/. DOI: 10.1259/bjr.20170636.
[20]
WEISS S W, GOLDBLUM J R, FOLPE A L. Enzinger and Weiss's soft tissue tumors[M]. Elsevier Health Sciences, 2007.
[21]
CHHABRA A, ASHIKYAN O, SLEPICKA C, et al. Conventional MR and diffusion-weighted imaging of musculoskeletal soft tissue malignancy: correlation with histologic grading[J]. Eur Radiol, 2019, 29(8): 4485-4494. DOI: 10.1007/s00330-018-5845-9.
[22]
LI H M, ZHAO S H, QIANG J W, et al. Diffusion kurtosis imaging for differentiating borderline from malignant epithelial ovarian tumors: a correlation with Ki-67 expression[J]. J Magn Reson Imaging, 2017, 46(5): 1499-1506. DOI: 10.1002/jmri.25696.
[23]
LEE S E, JUNG J Y, NAM Y, et al. Radiomics of diffusion-weighted MRI compared to conventional measurement of apparent diffusion-coefficient for differentiation between benign and malignant soft tissue tumors[J/OL]. Sci Rep, 2021, 11(1): 15276 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/34315971/. DOI: 10.1038/s41598-021-94826-w.
[24]
BIHAN D L, BRETON E, LALLEMAND D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[25]
HECTORS S J, WAGNER M, BESA C, et al. Intravoxel incoherent motion diffusion-weighted imaging of hepatocellular carcinoma: is there a correlation with flow and perfusion metrics obtained with dynamic contrast-enhanced MRI?[J]. J Magn Reson Imaging, 2016, 44(4): 856-864. DOI: 10.1002/jmri.25194.
[26]
WU G, LIU X L, XIONG Y, et al. Intravoxel incoherent motion and diffusion kurtosis imaging for discriminating soft tissue sarcoma from vascular anomalies[J/OL]. Medicine, 2018, 97(50): e13641 [2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/30558056/. DOI: 10.1097/MD.0000000000013641.
[27]
SONG X L, WANG L F, REN H H, et al. Intravoxel incoherent motion imaging in differentiation borderline from malignant ovarian epithelial tumors: correlation with histological cell proliferation and vessel characteristics[J]. J Magn Reson Imaging, 2020, 51(3): 928-935. DOI: 10.1002/jmri.26885.
[28]
ZHENG Y, HUANG W J, ZHANG X L, et al. A Noninvasive Assessment of Tumor Proliferation in Lung cancer Patients using Intravoxel Incoherent Motion Magnetic Resonance Imaging[J]. J Cancer, 2021, 12(1): 190-197. DOI: 10.7150/jca.48589.
[29]
LIU C L, WANG K, CHAN Q, et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging[J]. Eur Radiol, 2016, 26(11): 3888-3898. DOI: 10.1007/s00330-016-4241-6.
[30]
LIU Y Y, XU W J, HAO D P. Research progress of quantitative parameters of DCE-MRI in evaluating biological behavior of soft tissue tumors[J]. Radiol Pract, 2021, 36(10): 1326-1329. DOI: 10.13609/j.cnki.1000-0313.2021.10.025.
[31]
ZHANG Y, YUE B, ZHAO X D, et al. Benign or malignant characterization of soft-tissue tumors by using semiquantitative and quantitative parameters of dynamic contrast-enhanced magnetic resonance imaging[J]. J L'association Can Des Radiol, 2020, 71(1): 92-99. DOI: 10.1177/0846537119888409.
[32]
SONG W, ZHANG Y, ZHANG Q, et al. The value of quantitative parameters from diffusion weighted imaging and dynamic contrast enhanced MRI in differentiating benign and malignant soft tissue tumors[J]. Radiol Practice, 2022, 37(4): 498-503. DOI: 10.13609/j.cnki.1000-0313.2022.04.015.
[33]
ZHU Y F, LI Y S, ZHANG Y, et al. Radiomics model based on intravoxel incoherent motion and diffusion kurtosis imaging for predicting histopathological grade and Ki-67 expression level of soft tissue sarcomas[J]. Acta Radiol, 2023, 64(9): 2541-2551. DOI: 10.1177/02841851231179933.
[34]
ENGLUND E K, REITER D A, SHAHIDI B, et al. Intravoxel incoherent motion magnetic resonance imaging in skeletal muscle: review and future directions[J]. J Magn Reson Imaging, 2022, 55(4): 988-1012. DOI: 10.1002/jmri.27875.
[35]
MARZI S, STEFANETTI L, SPERATI F, et al. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors[J]. NMR Biomed, 2016, 29(1): 6-14. DOI: 10.1002/nbm.3446.

PREV Quantitative MRI study of calf muscle area and fat content in patients with chronic ankle instability
NEXT Clinical applications of deep learning-based methods for generating high-resolution magnetic resonance enhanced images in carotid arteries
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn