Share:
Share this content in WeChat
X
Review
Advances in diffusion tensor imaging-based studies of brain white matter microstructure in children with Rolandic epilepsy related to cognitive deficits
ZHOU Xiaoling  LIU Heng 

Cite this article as: ZHOU X L, LIU H. Advances in diffusion tensor imaging-based studies of brain white matter microstructure in children with Rolandic epilepsy related to cognitive deficits[J]. Chin J Magn Reson Imaging, 2024, 15(10): 153-157. DOI:10.12015/issn.1674-8034.2024.10.026.


[Abstract] Rolandic epilepsy (RE) is one of the most common types of idiopathic focal epilepsy in childhood and is often associated with cognitive impairment. Although the pathogenesis of RE is not well understood, diffusion tensor imaging (DTI) has provided an important noninvasive method for the study of white matter microstructure in children with RE in recent years. This paper presented a review of studies based on DTI techniques in the correlation between cerebral white matter microstructural changes and cognitive impairment in children with RE, including five sections on assessment of DTI covariates, abnormalities in cerebral white matter connectivity, lateralisation of the cerebral hemispheres, analysis of the DTI structural network and whole-brain connectivity in RE, and effects of antiepileptic drugs on brain structure in RE. Abnormalities in different white matter fibre tracts and their effects on cognitive function were specifically explored. By comprehensively analysing the results of these studies, this paper aims to provide a scientific basis for further exploration of the pathogenesis of RE and early intervention strategies in the future.
[Keywords] Rolandic epilepsy;white matter;magnetic resonance imaging;diffusion tensor imaging;cognitive disorder

ZHOU Xiaoling1, 2   LIU Heng1*  

1 Department of Radiology, Affliated Hospital of Zunyi Medical University, Guizhou University Intelligent Medical Imaging Engineering Research Center, Guizhou Provincial Medical Imaging Center, Zunyi 563000, China

2 Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: LIU H, E-mail: zmcliuh@163.com

Conflicts of interest   None.

Received  2024-05-09
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.026
Cite this article as: ZHOU X L, LIU H. Advances in diffusion tensor imaging-based studies of brain white matter microstructure in children with Rolandic epilepsy related to cognitive deficits[J]. Chin J Magn Reson Imaging, 2024, 15(10): 153-157. DOI:10.12015/issn.1674-8034.2024.10.026.

[1]
SPECCHIO N, WIRRELL E C, SCHEFFER I E, et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1398-1442. DOI: 10.1111/epi.17241.
[2]
HAN J Y, CHOI S A, CHUNG Y G, et al. Change of centrotemporal spikes from onset to remission in self-limited epilepsy with centrotemporal spikes (SLECTS)[J]. Brain Dev, 2020, 42(3): 270-276. DOI: 10.1016/j.braindev.2019.11.005.
[3]
WICKENS S, BOWDEN S C, D'SOUZA W. Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis[J]. Epilepsia, 2017, 58(10): 1673-1685. DOI: 10.1111/epi.13865.
[4]
KIM S E, LEE J H, CHUNG H K, et al. Alterations in white matter microstructures and cognitive dysfunctions in benign childhood epilepsy with centrotemporal spikes[J]. Eur J Neurol, 2014, 21(5): 708-717. DOI: 10.1111/ene.12301.
[5]
CIUMAS C, SAIGNAVONGS M, ILSKI F, et al. White matter development in children with benign childhood epilepsy with centro-temporal spikes[J]. Brain, 2014, 137(Pt 4): 1095-1106. DOI: 10.1093/brain/awu039.
[6]
XIAO F L, CHEN Q, YU X F, et al. Hemispheric lateralization of microstructural white matter abnormalities in children with active benign childhood epilepsy with centrotemporal spikes (BECTS): a preliminary DTI study[J]. J Neurol Sci, 2014, 336(1/2): 171-179. DOI: 10.1016/j.jns.2013.10.033.
[7]
OSTROWSKI L M, SONG D Y, THORN E L, et al. Dysmature superficial white matter microstructure in developmental focal epilepsy[J/OL]. Brain Commun, 2019, 1(1): fcz002 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/31608323/. DOI: 10.1093/braincomms/fcz002.
[8]
SHU M Z, YU C Y, SHI Q, et al. Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: an automated fiber quantification tractography study[J/OL]. Epilepsy Behav, 2021, 123: 108235 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/34411950/. DOI: 10.1016/j.yebeh.2021.108235.
[9]
OSTROWSKI L M, CHINAPPEN D M, STOYELL S M, et al. Children with Rolandic epilepsy have micro- and macrostructural abnormalities in white matter constituting networks necessary for language function[J/OL]. Epilepsy Behav, 2023, 144: 109254 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/37209552/. DOI: 10.1016/j.yebeh.2023.109254.
[10]
KIM H H, CHUNG G H, PARK S H, et al. Language-related white-matter-tract deficits in children with benign epilepsy with centrotemporal spikes: a retrospective study[J]. J Clin Neurol, 2019, 15(4): 502-510. DOI: 10.3988/jcn.2019.15.4.502.
[11]
HUANG T H, LAI M C, CHEN Y S, et al. Brain imaging in epilepsy-focus on diffusion-weighted imaging[J/OL]. Diagnostics (Basel), 2022, 12(11): 2602 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/36359445/. DOI: 10.3390/diagnostics12112602.
[12]
PODWALSKI P, SZCZYGIEŁ K, TYBURSKI E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
[13]
BENJAMINI D, HUTCHINSON E B, KOMLOSH M E, et al. Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging[J/OL]. NeuroImage, 2020, 221: 117195 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/32726643/. DOI: 10.1016/j.neuroimage.2020.117195.
[14]
SLATER D A, MELIE-GARCIA L, PREISIG M, et al. Evolution of white matter tract microstructure across the life span[J]. Hum Brain Mapp, 2019, 40(7): 2252-2268. DOI: 10.1002/hbm.24522.
[15]
LEBEL C, DEONI S. The development of brain white matter microstructure[J]. NeuroImage, 2018, 182: 207-218. DOI: 10.1016/j.neuroimage.2017.12.097.
[16]
MADDEN D J, BENNETT I J, SONG A W. Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging[J]. Neuropsychol Rev, 2009, 19(4): 415-435. DOI: 10.1007/s11065-009-9113-2.
[17]
MOLLOY C J, NUGENT S, BOKDE A L W. Alterations in diffusion measures of white matter integrity associated with healthy aging[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(6): 945-954. DOI: 10.1093/gerona/glz289.
[18]
ARICÒ M, ARIGLIANI E, GIANNOTTI F, et al. ADHD and ADHD-related neural networks in benign epilepsy with centrotemporal spikes: a systematic review[J/OL]. Epilepsy Behav, 2020, 112: 107448 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/32916583/. DOI: 10.1016/j.yebeh.2020.107448.
[19]
WU L L, YANG X Y, WANG X C, et al. The attention networks in benign epilepsy with centrotemporal spikes: a long-term follow-up study[J/OL]. J Clin Neurosci, 2021, 88: 22-27 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/33992188/. DOI: 10.1016/j.jocn.2021.03.022.
[20]
KANEMURA H, HATA S, AOYAGI K, et al. Serial changes of prefrontal lobe growth in the patients with benign childhood epilepsy with centrotemporal spikes presenting with cognitive impairments/behavioral problems[J]. Brain Dev, 2011, 33(2): 106-113. DOI: 10.1016/j.braindev.2010.03.005.
[21]
VAVASSORI L, VENTURINI M, ZIGIOTTO L, et al. The arcuate fasciculus: combining structure and function into surgical considerations[J/OL]. Brain Behav, 2023, 13(8): e3107 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/37280786/. DOI: 10.1002/brb3.3107.
[22]
SHAO Z D, GONG Y J, REN J, et al. Exploring the arcuate fasciculus from a clinical perspective[J/OL]. Front Neurosci, 2023, 17: 1307834 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/38033540/. DOI: 10.3389/fnins.2023.1307834.
[23]
ROY E, RICHIE-HALFORD A, KRUPER J, et al. White matter and literacy: a dynamic system in flux[J/OL]. Dev Cogn Neurosci, 2024, 65: 101341 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/38219709/. DOI: 10.1016/j.dcn.2024.101341.
[24]
BAGLIETTO M G, BATTAGLIA F M, NOBILI L, et al. Neuropsychological disorders related to interictal epileptic discharges during sleep in benign epilepsy of childhood with centrotemporal or Rolandic spikes[J]. Dev Med Child Neurol, 2001, 43(6): 407-412. DOI: 10.1017/s0012162201000755.
[25]
HARTWIGSEN G, BENGIO Y, BZDOK D. How does hemispheric specialization contribute to human-defining cognition?[J]. Neuron, 2021, 109(13): 2075-2090. DOI: 10.1016/j.neuron.2021.04.024.
[26]
HERVÉ P Y, ZAGO L, PETIT L, et al. Revisiting human hemispheric specialization with neuroimaging[J]. Trends Cogn Sci, 2013, 17(2): 69-80. DOI: 10.1016/j.tics.2012.12.004.
[27]
GURUNANDAN K, ARNAEZ-TELLERIA J, CARREIRAS M, et al. Converging evidence for differential specialization and plasticity of language systems[J]. J Neurosci, 2020, 40(50): 9715-9724. DOI: 10.1523/JNEUROSCI.0851-20.2020.
[28]
SPAGNA A, KIM T H, WU T T, et al. Right hemisphere superiority for executive control of attention[J]. Cortex, 2020, 122: 263-276. DOI: 10.1016/j.cortex.2018.12.012.
[29]
NAGEL B J, HERTING M M, MAXWELL E C, et al. Hemispheric lateralization of verbal and spatial working memory during adolescence[J]. Brain Cogn, 2013, 82(1): 58-68. DOI: 10.1016/j.bandc.2013.02.007.
[30]
BISIACCHI P, CAINELLI E. Structural and functional brain asymmetries in the early phases of life: a scoping review[J]. Brain Struct Funct, 2022, 227(2): 479-496. DOI: 10.1007/s00429-021-02256-1.
[31]
GÜNTÜRKÜN O, STRÖCKENS F, OCKLENBURG S. Brain lateralization: a comparative perspective[J]. Physiol Rev, 2020, 100(3): 1019-1063. DOI: 10.1152/physrev.00006.2019.
[32]
OCKLENBURG S, FRIEDRICH P, GÜNTÜRKÜN O, et al. Intrahemispheric white matter asymmetries: the missing link between brain structure and functional lateralization?[J]. Rev Neurosci, 2016, 27(5): 465-480. DOI: 10.1515/revneuro-2015-0052.
[33]
STEPHENS RL, LANGWORTHY BW, SHORT SJ, et al. White Matter Development from Birth to 6 Years of Age: A Longitudinal Study[J]. Cereb Cortex2020, 30(12): 6152-6168. DOI: 10.1093/cercor/bhaa170.
[34]
ZHAO MY, TONG E, DUARTE ARMINDO R, et al. Measuring Quantitative Cerebral Blood Flow in Healthy Children: A Systematic Review of Neuroimaging Techniques[J]. J Magn Reson Imaging2024, 59(1): 70-81. DOI: 10.1002/jmri.28758.
[35]
BEDOIN N, CIUMAS C, LOPEZ C, et al. Disengagement and inhibition of visual-spatial attention are differently impaired in children with rolandic epilepsy and Panayiotopoulos syndrome[J]. Epilepsy Behav2012, 25(1): 81-91. DOI: 10.1016/j.yebeh.2012.05.025.
[36]
SEETHALER M, LAUSEKER M, ERNST K, et al. Hemispheric differences in the duration of focal onset seizures[J]. Acta Neurol Scand2021, 143(3): 248-255. DOI: 10.1111/ane.13356.
[37]
SUN S, TIAN M, LIN X, et al. Disturbed white matter integrity on diffusion tensor imaging in young children with epilepsy[J/OL]. Clin Radiol, 2024, 79(1): e119-e126 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/37940443/. DOI: 10.1016/j.crad.2023.09.024.
[38]
LONG R, WANG Y T, CHEN L Z, et al. Abnormalities of cerebral white matter microstructure in children with new-onset, untreated idiopathic-generalized epilepsy[J/OL]. Front Neurol, 2021, 12: 744723 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/34917014/. DOI: 10.3389/fneur.2021.744723.
[39]
ZHANG Y W, LIU Z X, DOU W C, et al. Study of the microstructure of brain white matter in medial temporal lobe epilepsy based on diffusion tensor imaging[J/OL]. Brain Behav, 2023, 13(4): e2919 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/36880299/. DOI: 10.1002/brb3.2919.
[40]
AI H M, YANG C L, LU M, et al. Abnormal white matter structural network topological property in patients with temporal lobe epilepsy[J/OL]. CNS Neurosci Ther, 2024, 30(1): e14414 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/37622409/. DOI: 10.1111/cns.14414.
[41]
LIN H, LENG X, QIN C H, et al. Altered white matter structural network in frontal and temporal lobe epilepsy: a graph-theoretical study[J/OL]. Front Neurol, 2020, 11: 561 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/32625164/. DOI: 10.3389/fneur.2020.00561.
[42]
LI S J, WANG Y, QIAN L, et al. Alterations of white matter connectivity in preschool children with autism spectrum disorder[J]. Radiology, 2018, 288(1): 209-217. DOI: 10.1148/radiol.2018170059.
[43]
BESSELING R M H, JANSEN J F A, OVERVLIET G M, et al. Delayed convergence between brain network structure and function in rolandic epilepsy[J/OL]. Front Hum Neurosci, 2014, 8: 704 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/25249968/. DOI: 10.3389/fnhum.2014.00704.
[44]
YU Y L, CHU L, LIU C F, et al. Alterations of white matter network in patients with left and right non-lesional temporal lobe epilepsy[J]. Eur Radiol, 2019, 29(12): 6750-6761. DOI: 10.1007/s00330-019-06295-5.
[45]
KANEMURA H, SANO F, OHYAMA T, et al. Efficacy of levetiracetam for reducing rolandic discharges in comparison with carbamazepine and valproate sodium in rolandic epilepsy[J/OL]. Seizure, 2018, 62: 79-83 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/30308427/. DOI: 10.1016/j.seizure.2018.10.002.
[46]
LIU W T, YAN X X, CHENG D Z, et al. Oxcarbazepine monotherapy in children with benign epilepsy with centrotemporal spikes improves quality of life[J]. Chin Med J (Engl), 2020, 133(14): 1649-1654. DOI: 10.1097/cm9.0000000000000925.
[47]
BESAG F M C, VASEY M J. Neurocognitive effects of antiseizure medications in children and adolescents with epilepsy[J]. Paediatr Drugs, 2021, 23(3): 253-286. DOI: 10.1007/s40272-021-00448-0.
[48]
ROSS E E, STOYELL S M, KRAMER M A, et al. The natural history of seizures and neuropsychiatric symptoms in childhood epilepsy with centrotemporal spikes (CECTS)[J/OL]. Epilepsy Behav, 2020, 103(Pt A): 106437 [2024-05-08]. https://pubmed.ncbi.nlm.nih.gov/31645314/. DOI: 10.1016/j.yebeh.2019.07.038.

PREV Application value of intelligent quick magnetic resonance technology in supraspinatus tendon injuries
NEXT Advances in functional magnetic resonance in non-neuropsychiatric systemic lupus erythematosus
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn