Share:
Share this content in WeChat
X
Review
Research progress of brain MRI on the central thalamo-frontal-somatosensory cortex circuit in lifelong premature ejaculation
LI Qian  LU Jiaming  ZHU Zhengyang  LI Xin  ZHANG Wen  ZHANG Xin  ZHANG Bing 

Cite this article as: LI Q, LU J M, ZHU Z Y, et al. Research progress of brain MRI on the central thalamo-frontal-somatosensory cortex circuit in lifelong premature ejaculation[J]. Chin J Magn Reson Imaging, 2024, 15(10): 176-181, 186. DOI:10.12015/issn.1674-8034.2024.10.030.


[Abstract] Lifelong premature ejaculation (LPE) is the most common sexual dysfunction disorder in men, yet its central pathogenesis remains unclear. In recent years, researchers have employed multimodal magnetic resonance imaging (MRI) techniques to detect and analyze specific changes in the brain structure and function of LPE patients. Their focus has particularly been on the thalamo-frontal circuit related to the reward system and the somatosensory cortex involved in the ejaculation cycle. This article reviews the findings from brain MRI studies of LPE patients based on the thalamus-frontal-somatosensory cortex circuit. It aims to explore the role and mechanisms of the thalamus-frontal-somatosensory cortex circuit in the central nervous system of LPE, providing a scientific basis for developing new methods for the assessment and evaluation of premature ejaculation.
[Keywords] lifelong premature ejaculation;brain magnetic resonance imaging;resting-state functional magnetic resonance imaging;task-state functional magnetic resonance imaging;thalamus;frontal lobe;somatosensory cortex

LI Qian1   LU Jiaming2   ZHU Zhengyang2   LI Xin2   ZHANG Wen2   ZHANG Xin2   ZHANG Bing1, 2*  

1 Medical School of Nanjing University, Nanjing 210093, China

2 Department of Medical Imaging, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China

Corresponding author: ZHANG B, E-mail: zhangbing_nanjing@nju.edu.cn

Conflicts of interest   None.

Received  2024-07-01
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.030
Cite this article as: LI Q, LU J M, ZHU Z Y, et al. Research progress of brain MRI on the central thalamo-frontal-somatosensory cortex circuit in lifelong premature ejaculation[J]. Chin J Magn Reson Imaging, 2024, 15(10): 176-181, 186. DOI:10.12015/issn.1674-8034.2024.10.030.

[1]
ALTHOF S E, MCMAHON C G, WALDINGER M D, et al. An update of the international society of sexual medicine's guidelines for the diagnosis and treatment of premature ejaculation (PE)[J]. Sex Med, 2014, 2(2): 60-90. DOI: 10.1002/sm2.28.
[2]
SHAHER H, NOAH K, ABDELZAHER M, et al. Is bulbospongiosus muscle Botox injection safe and effective in treating lifelong premature ejaculation? Randomized controlled study[J/OL]. World J Urol, 2024, 42(1): 218 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38581447/. DOI: 10.1007/s00345-024-04899-1.
[3]
LI H Y, WANG Y H, XI H Y, et al. Alterations of regional spontaneous brain activity in obsessive-compulsive disorders: a meta-analysis[J/OL]. J Psychiatr Res, 2023, 165: 325-335 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37573797/. DOI: 10.1016/j.jpsychires.2023.07.036.
[4]
DUBOIS B, VON ARNIM C A F, BURNIE N, et al. Biomarkers in Alzheimer's disease: role in early and differential diagnosis and recognition of atypical variants[J/OL]. Alzheimers Res Ther, 2023, 15(1): 175 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37833762/. DOI: 10.1186/s13195-023-01314-6.
[5]
GAO S Z, CHEN J H, XU Y, et al. Altered structural and functional connectivity contribute to rapid ejaculation: insights from a multimodal neuroimaging study[J/OL]. Neuroscience, 2021, 471: 93-101 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34216696/. DOI: 10.1016/j.neuroscience.2021.06.034.
[6]
ARU J, LARKUM M E, SHINE J M. The feasibility of artificial consciousness through the lens of neuroscience[J]. Trends Neurosci, 2023, 46(12): 1008-1017. DOI: 10.1016/j.tins.2023.09.009.
[7]
MUNN B R, MÜLLER E J, MEDEL V, et al. Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states[J/OL]. Nat Commun, 2023, 14(1): 6846 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37891167/. DOI: 10.1038/s41467-023-42465-2.
[8]
WU N, CHEN J H, WANG T, et al. Altered brain activity associated with premature ejaculation improved by electroacupuncture in rats[J/OL]. Sex Med, 2024, 12(4): qfae047 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/39220342/. DOI: 10.1093/sexmed/qfae047.
[9]
GUTIÉRREZ-OSPINA G, BIALY M. Editorial: sexual behavior research: towards an understanding of CNS and spinal cord modulation of male sexual behavior and sexual dysfunctions[J/OL]. Front Neurosci, 2024, 18: 1422477 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38800573/. DOI: 10.3389/fnins.2024.1422477.
[10]
WOLTERS J P, HELLSTROM W J G. Current concepts in ejaculatory dysfunction[J/OL]. Rev Urol, 2006, 8(Suppl 4): S18-S25 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/17215997/.
[11]
OZDEMIR Ö. Is premature ejaculation an impulse control disorder?[J]. Med Hypotheses, 2012, 79(1): 59-62. DOI: 10.1016/j.mehy.2012.03.034.
[12]
MA G C, ZOU Z J, LAI Y F, et al. Regular penis-root masturbation, a novel behavioral therapy in the treatment of primary premature ejaculation[J]. Asian J Androl, 2019, 21(6): 631-634. DOI: 10.4103/aja.aja_34_19.
[13]
CALABRÒ R S, CACCIOLA A, BRUSCHETTA D, et al. Neuroanatomy and function of human sexual behavior: a neglected or unknown issue?[J/OL]. Brain Behav, 2019, 9(12): e01389 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31568703/. DOI: 10.1002/brb3.1389.
[14]
ATALAY H A, SONKAYA A R, OZBIR S, et al. Are there differences in brain morphology in patients with lifelong premature ejaculation?[J]. J Sex Med, 2019, 16(7): 992-998. DOI: 10.1016/j.jsxm.2019.04.008.
[15]
XU Z L, YANG X J, GAO M, et al. Abnormal resting-state functional connectivity in the whole brain in lifelong premature ejaculation patients based on machine learning approach[J/OL]. Front Neurosci, 2019, 13: 448 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31139043/. DOI: 10.3389/fnins.2019.00448.
[16]
GAO M, FENG N N, WU J Y, et al. Altered functional connectivity of hypothalamus in lifelong premature ejaculation patients[J]. J Magn Reson Imaging, 2020, 52(3): 778-784. DOI: 10.1002/jmri.27099.
[17]
ZHOU K K, ZHU L, HOU G Q, et al. The contribution of thalamic nuclei in salience processing[J/OL]. Front Behav Neurosci, 2021, 15: 634618 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33664657/. DOI: 10.3389/fnbeh.2021.634618.
[18]
WOLFF M, VANN S D. The cognitive thalamus as a gateway to mental representations[J]. J Neurosci, 2019, 39(1): 3-14. DOI: 10.1523/JNEUROSCI.0479-18.2018.
[19]
GAO S Z, CHEN J H, LIU J, et al. Decreased grey matter volume in dorsolateral prefrontal cortex and thalamus accompanied by compensatory increases in middle cingulate gyrus of premature ejaculation patients[J]. Andrology, 2024, 12(4): 841-849. DOI: 10.1111/andr.13547.
[20]
LU J M, YUAN L H, JIN J X, et al. Brain cortical complexity and subcortical morphometrics in lifelong premature ejaculation[J/OL]. Front Hum Neurosci, 2020, 14: 283 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/32792928/. DOI: 10.3389/fnhum.2020.00283.
[21]
GAO M, YANG X J, LIU L, et al. Abnormal white matter microstructure in lifelong premature ejaculation patients identified by tract-based spatial statistical analysis[J]. J Sex Med, 2018, 15(9): 1272-1279. DOI: 10.1016/j.jsxm.2018.07.012.
[22]
LV H, WANG Z, TONG E, et al. Resting-state functional MRI: everything that nonexperts have always wanted to know[J]. AJNR Am J Neuroradiol, 2018, 39(8): 1390-1399. DOI: 10.3174/ajnr.A5527.
[23]
XU Y, LIU T, QIAO Y, et al. Correlations between resting-state brain functional characteristics and TCM syndrome in premature ejaculation patients with heart-kidney disharmony[J]. Natl J Androl, 2022, 28(6): 516-523.
[24]
MA Y B, HUANG L J, MAO C P, et al. Changes in the amplitude of low-frequency fluctuation in patients with lifelong premature ejaculation by resting-state functional MRI[J/OL]. Sex Med, 2021, 9(1): 100287 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33485114/. DOI: 10.1016/j.esxm.2020.100287.
[25]
FINN E S, POLDRACK R A, SHINE J M. Functional neuroimaging as a catalyst for integrated neuroscience[J]. Nature, 2023, 623(7986): 263-273. DOI: 10.1038/s41586-023-06670-9.
[26]
GENG B W, GAO M, WU J Y, et al. Functional connectivity of nucleus accumbens is associated with lifelong premature ejaculation in male adults: a resting-state fMRI study[J]. Clin Neuroradiol, 2022, 32(3): 655-663. DOI: 10.1007/s00062-021-01105-2.
[27]
DE GROOTE A, DE KERCHOVE D'EXAERDE A. Thalamo-nucleus accumbens projections in motivated behaviors and addiction[J/OL]. Front Syst Neurosci, 2021, 15: 711350 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34335197/. DOI: 10.3389/fnsys.2021.711350.
[28]
ZHANG Z, LIAO M, YAO Z J, et al. Frequency-specific functional connectivity density as an effective biomarker for adolescent generalized anxiety disorder[J/OL]. Front Hum Neurosci, 2017, 11: 549 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29259549/. DOI: 10.3389/fnhum.2017.00549.
[29]
LU J M, ZHANG X, WANG H T, et al. Short- and long-range synergism disorders in lifelong premature ejaculation evaluated using the functional connectivity density and network property[J/OL]. Neuroimage Clin, 2018, 19: 607-615 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29984168/. DOI: 10.1016/j.nicl.2018.05.025.
[30]
ZHANG C G, JING H, YAN H H, et al. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder[J/OL]. Front Neurosci, 2023, 17: 1135337 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36960171/. DOI: 10.3389/fnins.2023.1135337.
[31]
XIA J D, CHEN F, ZHANG Q J, et al. Abnormal thalamic metabolism in patients with lifelong premature ejaculation[J]. J Sex Med, 2021, 18(2): 275-283. DOI: 10.1016/j.jsxm.2020.11.014.
[32]
ZHANG Q J, YANG B B, YANG J, et al. Inhibitory role of gamma-aminobutyric receptors in paraventricular nucleus on ejaculatory responses in rats[J]. J Sex Med, 2020, 17(4): 614-622. DOI: 10.1016/j.jsxm.2020.01.006.
[33]
FU X N, WANG J. The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases[J]. Chin J Magn Reson Imag, 2023, 14(6): 89-93. DOI: 10.12015/issn.1674-8034.2023.06.015.
[34]
CHEN J H, WANG Q, HUANG X F, et al. Potential biomarkers for distinguishing primary from acquired premature ejaculation: a diffusion tensor imaging based network study[J/OL]. Front Neurosci, 2022, 16: 929567 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36340794/. DOI: 10.3389/fnins.2022.929567.
[35]
CHEN J, HUANG X, LU C, et al. Graph analysis of DTI-based connectome: decreased local efficiency of subcortical regions in PE patients with high sympathetic activity[J]. Andrology, 2020, 8(2): 400-406. DOI: 10.1111/andr.12701.
[36]
CATANI M. The anatomy of the human frontal lobe[J/OL]. Handb Clin Neurol, 2019, 163: 95-122 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31590750/. DOI: 10.1016/B978-0-12-804281-6.00006-9.
[37]
HWANG E J, SATO T R, SATO T K. A canonical scheme of bottom-up and top-down information flows in the frontoparietal network[J/OL]. Front Neural Circuits, 2021, 15: 691314 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34475815/. DOI: 10.3389/fncir.2021.691314.
[38]
DU J N, ROLLS E T, CHENG W, et al. Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans[J/OL]. Cortex, 2020, 123: 185-199 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31869573/. DOI: 10.1016/j.cortex.2019.10.012.
[39]
DENG W L, ROLLS E T, JI X X, et al. Separate neural systems for behavioral change and for emotional responses to failure during behavioral inhibition[J]. Hum Brain Mapp, 2017, 38(7): 3527-3537. DOI: 10.1002/hbm.23607.
[40]
HOLSTEGE G, HUYNH H K. Brain circuits for mating behavior in cats and brain activations and de-activations during sexual stimulation and ejaculation and orgasm in humans[J]. Horm Behav, 2011, 59(5): 702-707. DOI: 10.1016/j.yhbeh.2011.02.008.
[41]
ROLLS E T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala[J]. Brain Struct Funct, 2023, 228(5): 1201-1257. DOI: 10.1007/s00429-023-02644-9.
[42]
CHAN Y C, HSU W C, CHOU T L. Differential neural substrates for responding to monetary, sexual humor, and erotic rewards[J/OL]. Biol Psychol, 2022, 172: 108385 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35777520/. DOI: 10.1016/j.biopsycho.2022.108385.
[43]
BITTONI C, KIESNER J. When the brain turns on with sexual desire: fMRI findings, issues, and future directions[J]. Sex Med Rev, 2023, 11(4): 296-311. DOI: 10.1093/sxmrev/qead029.
[44]
KERREBIJN I, WAINBERG M, ZHUKOVSKY P, et al. Case-control virtual histology elucidates cell types associated with cortical thickness differences in Alzheimer's disease[J/OL]. Neuroimage, 2023, 276: 120177 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37211192/. DOI: 10.1016/j.neuroimage.2023.120177.
[45]
ZHANG T L, YUAN P, CUI Y H, et al. Convergent and divergent structural connectivity of brain white matter network between patients with erectile dysfunction and premature ejaculation: a graph theory analysis study[J/OL]. Front Neurol, 2022, 13: 804207 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/35273555/. DOI: 10.3389/fneur.2022.804207.
[46]
CHEN J H, YANG J, XIANG Z L, et al. Graph theory analysis reveals premature ejaculation is a brain disorder with altered structural connectivity and depressive symptom: a DTI-based connectome study[J]. Eur J Neurosci, 2021, 53(6): 1905-1921. DOI: 10.1111/ejn.15048.
[47]
XING S Y, LU J M, JIANG Y H, et al. Abnormal cortical surface-based spontaneous and functional connectivity in the whole brain in lifelong premature ejaculation patients[J]. Asian J Androl, 2023, 25(6): 699-703. DOI: 10.4103/aja202349.
[48]
CHEN J H, WU W K, XIANG Z L, et al. Aberrant default mode network and auditory network underlying the sympathetic skin response of the penis (PSSR) of patients with premature ejaculation: a resting-state fMRI study[J]. Andrology, 2021, 9(1): 277-287. DOI: 10.1111/andr.12914.
[49]
YANG X J, GAO M, ZHANG L, et al. Central neural correlates during inhibitory control in lifelong premature ejaculation patients[J/OL]. Front Hum Neurosci, 2018, 12: 206 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/29872385/. DOI: 10.3389/fnhum.2018.00206.
[50]
XU Y, ZHANG X, XIANG Z L, et al. Abnormal functional connectivity between the left medial superior frontal gyrus and amygdala underlying abnormal emotion and premature ejaculation: a resting state fMRI study[J/OL]. Front Neurosci, 2021, 15: 704920 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34421524/. DOI: 10.3389/fnins.2021.704920.
[51]
GAO M, FENG N N, LIU X, et al. Abnormal degree centrality in lifelong premature ejaculation patients: an fMRI study[J]. Brain Imaging Behav, 2021, 15(3): 1412-1419. DOI: 10.1007/s11682-020-00340-4.
[52]
RIVERA-ROMANO L S, JUÁREZ-CANO G, HERNÁNDEZ-LEMUS E, et al. Structure of communities in semantic networks of biomedical research on disparities in health and sexism[J]. Biomedica, 2020, 40(4): 702-721. DOI: 10.7705/biomedica.5182.
[53]
ZHANG B, LU J M, XIA J D, et al. Functional insights into aberrant brain responses and integration in patients with lifelong premature ejaculation[J/OL]. Sci Rep, 2017, 7(1): 460 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/28352072/. DOI: 10.1038/s41598-017-00421-3.
[54]
HARJUNEN V J, SPAPÉ M, RAVAJA N. Anticipation of sexually arousing visual event leads to overestimation of elapsed time[J/OL]. PLoS One, 2024, 19(7): e0295216 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38995957/. DOI: 10.1371/journal.pone.0295216.
[55]
PASTORE A L, PALLESCHI G, LETO A, et al. A prospective randomized study to compare pelvic floor rehabilitation and dapoxetine for treatment of lifelong premature ejaculation[J]. Int J Androl, 2012, 35(4): 528-533. DOI: 10.1111/j.1365-2605.2011.01243.x.
[56]
GABAY N C, BABAIE-JANVIER T, ROBINSON P A. Dynamics of cortical activity eigenmodes including standing, traveling, and rotating waves[J/OL]. Phys Rev E, 2018, 98(4): 042413 [2024-06-30]. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.042413. DOI: 10.1103/physreve.98.042413.
[57]
PANG J C, AQUINO K M, OLDEHINKEL M, et al. Geometric constraints on human brain function[J]. Nature, 2023, 618(7965): 566-574. DOI: 10.1038/s41586-023-06098-1.
[58]
FERRETTI A, CAULO M, DEL GRATTA C, et al. Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI[J]. Neuroimage, 2005, 26(4): 1086-1096. DOI: 10.1016/j.neuroimage.2005.03.025.
[59]
PEREIRA-LOURENÇO M, BRITO D V E, PEREIRA B J. Premature ejaculation: from physiology to treatment[J]. J Family Reprod Health, 2019, 13(3): 120-131.
[60]
ALLEN K, WISE N, FRANGOS E, et al. Male urogenital system mapped onto the sensory cortex: functional magnetic resonance imaging evidence[J]. J Sex Med, 2020, 17(4): 603-613. DOI: 10.1016/j.jsxm.2019.12.007.
[61]
WISE N J, FRANGOS E, KOMISARUK B R. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis[J/OL]. Socioaffect Neurosci Psychol, 2016, 6: 31481 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/27791966/. DOI: 10.3402/snp.v6.31481.
[62]
CHEN J H, YANG J, HUANG X F, et al. Brain functional biomarkers distinguishing premature ejaculation from anejaculation by ALFF: a resting-state fMRI study[J]. J Sex Med, 2020, 17(12): 2331-2340. DOI: 10.1016/j.jsxm.2020.09.002.
[63]
FENG N N, GAO M, WU J Y, et al. Higher inter-hemispheric homotopic connectivity in lifelong premature ejaculation patients: a pilot resting-state fMRI study[J]. Quant Imaging Med Surg, 2021, 11(7): 3234-3243. DOI: 10.21037/qims-20-1103.
[64]
BOCKAJ A, MUISE M D, BELU C F, et al. Under pressure: men's and women's sexual performance anxiety in the sexual interactions of adult couples[J/OL]. J Sex Res, 2024: 1-13 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/38848469/. DOI: 10.1080/00224499.2024.2357587.
[65]
JAMIL A, GUTLAPALLI S D, ALI M, et al. Meditation and its mental and physical health benefits in 2023[J/OL]. Cureus, 2023, 15(6): e40650 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37476142/. DOI: 10.7759/cureus.40650.
[66]
VEENING J G, COOLEN L M. Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits[J/OL]. Pharmacol Biochem Behav, 2014, 121: 170-183 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/24368305/. DOI: 10.1016/j.pbb.2013.12.017.
[67]
SHINE J M. Adaptively navigating affordance landscapes: how interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour[J/OL]. Neurosci Biobehav Rev, 2022, 143: 104921 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/36280183/. DOI: 10.1016/j.neubiorev.2022.104921.
[68]
BECH P, CROCHET S, DARD R, et al. Striatal dopamine signals and reward learning[J/OL]. Function, 2023, 4(6): zqad056 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37841525/. DOI: 10.1093/function/zqad056.
[69]
SHINE J M, LEWIS L D, GARRETT D D, et al. The impact of the human thalamus on brain-wide information processing[J]. Nat Rev Neurosci, 2023, 24(7): 416-430. DOI: 10.1038/s41583-023-00701-0.
[70]
SOLOMONOV N, VICTORIA L W, LYONS K, et al. Social reward processing in depressed and healthy individuals across the lifespan: a systematic review and a preliminary coordinate-based meta-analysis of fMRI studies[J]. Behav Brain Res, 2023, 454: 114632. DOI: 10.1016/j.bbr.2023.114632.
[71]
WEINSTEIN A M. Reward, motivation and brain imaging in human healthy participants - A narrative review[J/OL]. Front Behav Neurosci, 2023, 17: 1123733 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37035621/. DOI: 10.3389/fnbeh.2023.1123733.
[72]
RADTKE-SCHULLER S, TOWN S M, YIN P B, et al. Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections[J]. Brain Struct Funct, 2020, 225(5): 1643-1667. DOI: 10.1007/s00429-020-02086-7.
[73]
LE T M, ZHANG S, ZHORNITSKY S, et al. Neural correlates of reward-directed action and inhibition of action[J/OL]. Cortex, 2020, 123: 42-56 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/31747630/. DOI: 10.1016/j.cortex.2019.10.007.
[74]
GAO M, GENG B W, JANNINI T B, et al. Thalamocortical dysconnectivity in lifelong premature ejaculation: a functional MRI study[J/OL]. Urology, 2022, 159: 133-138 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34688769/. DOI: 10.1016/j.urology.2021.10.010.
[75]
LU J M, CHEN Q, LI D Y, et al. Reconfiguration of dynamic functional connectivity states in patients with lifelong premature ejaculation[J/OL]. Front Neurosci, 2021, 15: 721236 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/34588948/. DOI: 10.3389/fnins.2021.721236.
[76]
WU J Y, GAO M, PIAO R Q, et al. Magnetic resonance imaging-based structural covariance changes of the Striatum in lifelong premature ejaculation patients[J]. J Magn Reson Imaging, 2022, 55(2): 443-450. DOI: 10.1002/jmri.27851.
[77]
JIRSA V, WANG H F, TRIEBKORN P, et al. Personalised virtual brain models in epilepsy[J]. Lancet Neurol, 2023, 22(5): 443-454. DOI: 10.1016/S1474-4422(23)00008-X.
[78]
FUKUDA M, POPLAWSKY A J, KIM S G. Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2021, 376(1815): 20190623 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/33190606/. DOI: 10.1098/rstb.2019.0623.
[79]
JIA K, GOEBEL R, KOURTZI Z. Ultra-high field imaging of human visual cognition[J/OL]. Annu Rev Vis Sci, 2023, 9: 479-500 [2024-06-30]. https://pubmed.ncbi.nlm.nih.gov/37137282/. DOI: 10.1146/annurev-vision-111022-123830.

PREV Progress on brain magnetic resonance imaging in migraine secondary to patent foramen ovale
NEXT Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn