Share:
Share this content in WeChat
X
Review
Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease
WANG Jinjin  JI Yiding  DAI Hui  SHEN Liyuan  HE Yuan 

Cite this article as: WANG J J, JI Y D, DAI H, et al. Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease[J]. Chin J Magn Reson Imaging, 2024, 15(10): 182-186. DOI:10.12015/issn.1674-8034.2024.10.031.


[Abstract] Intracranial atherosclerotic disease (ICAD) has a high morbidity and recurrence rate. With the rapid development of MRI technologies and applications, multimodal MRI provides multiple valuable information on vessel lumen, vessel wall, cerebral perfusion and cerebral hemodynamics. This review integrates commonly used MRI techniques in clinical practice to discuss the recent advances in ICAD research from morphology to function, mainly focusing on the capabilities and differences of various techniques in diagnosing luminal stenosis, vulnerable high-risk plaques and cerebral perfusion, etc., aiming to provide clinicians with information on ICAD morphology and function, as a reference for diagnosis, differential diagnosis, risk prediction, and treatment assessment.
[Keywords] intracranial atherosclerotic disease;magnetic resonance imaging;vulnerable high-risk plaque;cerebral perfusion;collateral circulation

WANG Jinjin1   JI Yiding1   DAI Hui2   SHEN Liyuan1   HE Yuan1*  

1 Department of Radiology, the Ninth Affiliated Hospital of Soochow University, Suzhou 215200,China

2 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

Corresponding author: HE Y, E-mail: heyuan1127@126.com

Conflicts of interest   None.

Received  2024-04-18
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.031
Cite this article as: WANG J J, JI Y D, DAI H, et al. Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease[J]. Chin J Magn Reson Imaging, 2024, 15(10): 182-186. DOI:10.12015/issn.1674-8034.2024.10.031.

[1]
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
[2]
GUNDA S T, YIP J H, NG V T, et al. The diagnostic accuracy of transcranial color-coded doppler ultrasound technique in stratifying intracranial cerebral artery stenoses in cerebrovascular disease patients: A systematic review and meta-analysis[J/OL]. J Clin Med, 2024, 13(5): 1507 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934108. DOI: 10.3390/jcm13051507.
[3]
WU X B, LIU Y A, HUANG L X, et al. Hemodynamics combined with inflammatory indicators exploring relationships between ischemic stroke and symptomatic middle cerebral artery atherosclerotic stenosis[J/OL]. Eur J Med Res, 2023, 28(1): 378 [2024-04-18] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523698. DOI: 10.1186/s40001-023-01344-8.
[4]
CHEN L H, SPAGNOLO-ALLENDE A, YANG D, et al. Epidemiology, pathophysiology, and imaging of atherosclerotic intracranial disease[J]. Stroke, 2024, 55(2): 311-323. DOI: 10.1161/STROKEAHA.123.043630.
[5]
GUTIERREZ J, TURAN T N, HOH B L, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment[J]. Lancet Neurol, 2022, 21: 355‐368. DOI: 10.1016/S1474-4422(21)00376-8.
[6]
GOTTESMAN R F, MOSLEY T H, KNOPMAN D S, et al. Association of intracranial atherosclerotic disease with brain β-amyloid deposition: secondary analysis of the ARIC Study[J]. JAMA Neurol, 2020, 77: 350-357. DOI: 10.1001/jamaneurol.2019.4339.
[7]
SABAYAN B, GOUDARZI R, JI Y, et al. Intracranial atherosclerosis disease associated with cognitive impairment and dementia: Systematic review and meta-analysis[J/OL]. J Am Heart Assoc, 2023, 12(22): e032506 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727275. DOI: 10.1161/JAHA.123.032506.
[8]
WANG Y, LIU T, LI Y, et al. Triglyceride-glucose index, symptomatic intracranial artery stenosis and recurrence risk in minor stroke patients with hypertension[J/OL]. Cardiovasc Diabetol, 2023, 22(1): 90 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114394. DOI: 10.1186/s12933-023-01823-6.
[9]
SONG J W, PAVLOU A, XIAO J, et al. Vessel wall magnetic resonance imaging biomarkers of symptomatic intracranial atherosclerosis: a meta-analysis[J]. Stroke, 2021, 52(1): 193-202. DOI: 10.1161/STROKEAHA.120.031480.
[10]
KANG D W, KIM D Y, KIM J, et al. Emerging concept of intracranial arterial diseases: The role of high resolution vessel wall MRI[J]. J Stroke, 2024, 26(1): 26-40. DOI: 10.5853/jos.2023.02481.
[11]
YANG Y, HE Y, XU Y, et al. The impact of asymptomatic intracranial atherosclerotic stenosis on the clinical outcomes of patients with single subcortical infarction[J/OL]. Front Med (Lausanne), 2023, 10: 1249347 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502720. DOI: 10.3389/fmed.2023.1249347.
[12]
SHI Z, ZHAO X, ZENG M, et al. Time-of-flight intracranial MRA at 3 T versus 5 T versus 7 T: Visualization of distal small cerebral arteries[J]. Radiology, 2023, 306(1): 207-217. DOI: 10.1148/radiol.220114.
[13]
FAKIH R, VARON MILLER A, RAGHURAM A, et al. High resolution 7T MR imaging in characterizing culprit intracranial atherosclerotic plaques[J/OL]. Interv Neuroradiol, 2022, 26: 15910199221145760 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36573263. DOI: 10.1177/15910199221145760.
[14]
SAMANIEGO E A, BOLTZE J, LYDEN P D, et al. Priorities for advancements in neuroimaging in the diagnostic workup of acute stroke[J]. Stroke, 2023, 54(12): 3190-3201. DOI: 10.1161/STROKEAHA.123.044985.
[15]
SUI B, SANNANANJA B, ZHU C, et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease[J/OL]. J Neurointerv Surg, 2023, 31: jnis-2023-020668 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902184. DOI: 10.1136/jnis-2023-020668.
[16]
ABOUSRAFA S E, MAIR G. MRI for collateral assessment pre-thrombectomy and association with outcome: a systematic review and meta-analysis[J]. Neuroradiology, 2023, 65(6): 1001-1014. DOI: 10.1007/s00234-023-03127-8.
[17]
NAGPAL P, GRIST T M. MR angiography: Contrast-enhanced acquisition techniques[J]. Magn Reson Imaging Clin N Am, 2023, 31(3): 493-501. DOI: 10.1016/jmric.2023.04.007.
[18]
ZHANG J, DING S, ZHAO H, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA[J]. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1.
[19]
WU J J, ZHANG Y T, ZHANG L, et al. The correlation between symptomatic carotid atherosclerotic plaques and short-term mRS score after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(3): 26-30. DOI: 10.12015/issn.1674-8034.2024.03.005.
[20]
SUN J, FENG X R, FENG P Y, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
[21]
KIM S J, SCHNEIDER D J, FELDMANN E, et al. Intracranial atherosclerosis: Review of imaging features and advances in diagnostics[J]. Int J Stroke, 2022, 17(6): 599-607. DOI: 10.1177/17474930211066427.
[22]
CHEN L H, SPAGNOLO-ALLENDE A, YANG D, et al. Epidemiology, pathophysiology, and imaging of atherosclerotic intracranial disease[J]. Stroke, 2024, 55(2): 311-323. DOI: 10.1161/STROKEAHA.123.043630.
[23]
SUN B, WANG L, LI X, et al. Intracranial atherosclerotic plaque characteristics and burden associated with recurrent acute stroke: A 3D quantitative vessel wall MRI study[J/OL]. Front Aging Neurosc, 2021, 13: 706544 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355600. DOI: 10.3389/fnagi.2021.706544.
[24]
SHI Z, LI J, ZHAO M, et al. Progression of plaque burden of intracranial atherosclerotic plaque predicts recurrent stroke/transient ischemic attack: A pilot follow-up study using higher-resolution MRI[J]. J Magn Reson Imaging, 2021, 54(2): 560-570. DOI: 10.1002/jmri.27561.
[25]
FENG X, FANG H, IP B Y M, et al. Cerebral hemodynamics underlying artery-to-artery embolism in symptomatic intracranial atherosclerotic disease[J]. Transl Stroke Res, 2024, 15(3): 572-579. DOI: 10.1007/s12975-023-01146-4.
[26]
AIZAZ M, VAN DER POL J A J, WIERTS R, et al. Evaluation of a dedicated radiofrequency carotid PET/MRI coil[J/OL]. J Clin Med, 2022, 11(9): 2569 [2024-04-18]. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc9101928. DOI: 10.3390/jcm11092569.
[27]
SILVESTRI E, VOLPI T, BETTINELLI A, et al. Image-derived input function in brain [18F]FDG PET data: which alternatives to the carotid siphons?[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 243-246. DOI: 10.1109/EMBC48229.2022.9871200.
[28]
SHENG J, ZHANG L J. Advances in clinical research on PET molecular imaging in atherosclerotic vulnerable plaques[J]. Int J Med Radiol, 2023, 46(6): 685-690. DOI: 10.19300/j.2023.Z20868.
[29]
UNIKEN VENEMA S M, DANKBAAR J W, VAN DER LUGT A, et al. Cerebral collateral circulation in the era of reperfusion therapies for acute ischemic stroke[J]. Stroke, 2022, 53(10): 3222-3234. DOI: 10.1161/STROKEAHA.121.037869.
[30]
LU S S. Multiphase MR angiography collateral map in brain stroke: may we shift the time from an absolute to the relative for therapy decisions?[J]. Eur Radiol, 2024, 34(3): 1409-1410. DOI: 10.1007/s00330-023-10275-1.
[31]
SUN Z, JIANG D, LIU P, et al. Age-related tortuosity of carotid and vertebral arteries: quantitative evaluation with MR angiography[J/OL]. Front Neurol, 2022, 13: 858805 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099009. DOI: 10.3389/fneur.2022.858805.
[32]
ZHAO D L, LI R Y, LI C, et al. Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA[J/OL]. Clin Radiol, 2023, 78(2): e63-e70 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36307233. DOI: 10.1016/j.crad.2022.08.132.
[33]
LU F, SUN M Y, MA Y, et al. Assessment of carotid artery stenosis and hemodynamic risk factors related to stroke based on 4D Flow MRI[J]. Chin J Magn Reson Imaging, 2024, 15(2): 14-22, 47. DOI: 10.12015/issn.1674-8034.2024.02.003.
[34]
ROH H G, KIM E Y, KIM I S, et al. A novel collateral imaging method derived from time-resolved dynamic contrast-enhanced MR angiography in acute ischemic stroke: a pilot study[J]. AJNR Am J Neuroradiol, 2019, 40(6): 946-953. DOI: 10.3174/ajnr.A6068.
[35]
WU D, ZHOU Y, ZHU W, et al. Collateral circulation predicts 3-month functional outcomes of subacute ischemic stroke patients: A study combining arterial spin labeling and MR angiography[J/OL]. Eur J Radiol, 2023, 160: 110710 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36701823. DOI: 10.1016/j.ejrad.2023.110710.
[36]
ZHANG X, ZHOU C, CAO Y Z, et al. High-resolution magnetic resonance imaging for predicting successful recanalization in patients with chronic internal carotid artery occlusion[J/OL]. Front Neurol, 2022, 13: 1003800 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475072. DOI: 10.3389/fneur.2022.1003800.
[37]
WANG S Y, AI Z P, WU Q Q, et al. Application value of TWIST technique in evaluating collateral circulation in acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(5): 11-16. DOI: 10.12015/issn.1674-8034.2022.05.003.
[38]
TAKEHARA Y, SEKINE T, OBATA T. Why 4D flow MRI? real advantages[J]. Magn Reson Med Sci, 2022, 21(2): 253-256. DOI: 10.2463/mrms.e.2022-1000.
[39]
LIN X Y, ZHANG Z L. Research progress on the application of 4D-ASL in cerebrovascular disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 113-118. DOI: 10.12015/issn.1674-8034.2023.06.020.
[40]
ZHOU H, WANG X C. New progress in imaging evaluation of intracranial atherosclerosis[J]. Chin J Magn Reson Imaging, 2022, 13(2): 123-126. DOI: 10.12015/issn.1674-8034.2022.02.030.
[41]
XU J, PENG M Y, ZHOU W Z, et al. The study on the correlation between hypoperfusion intensity ratio and angiography collateral circulation in acute ischemic stroke before endovascular thrombectomy therapy[J]. Chin J Magn Reson Imaging, 2020, 11(11): 971-974, 1055. DOI: 10.12015/issn.1674-8034.2020.11.003.
[42]
GUENEGO A, FAHED R, ALBERS G W, et al. Hypoperfusion intensity ratio correlates with angiographic collaterals in acute ischaemic stroke with M1 occlusion[J]. Eur J Neurol, 2020, 27(5): 864-870. DOI: 10.1111/ene.14181.
[43]
HUO X, MA G, TONG X, et al. ANGEL-ASPECT investigators. trial of endovascular therapy for acute ischemic stroke with large infarct[J]. N Engl J Med, 2023, 388(14): 12 72-1283. DOI: 10.1056/NEJMoa2213379.
[44]
LIN C H, OVBIAGELE B, LIEBESKIND D S, et al. Brain imaging prior to thrombectomy in the late window of large vessel occlusion ischemic stroke: a systematic review and meta-analysis[J]. Neuroradiology, 2024, 66(5): 809-816. DOI: 10.1007/s00234-024-03324-z.
[45]
LIAO M, WANG M, LI H, et al. Discontinuity of deep medullary veins in SWI is associated with deep white matter hyperintensity volume and cognitive impairment in cerebral small vessel disease[J]. J Affect Disord, 2024, 350: 600-607. DOI: 10.1016/j.jad.2024.01.124.
[46]
SEILER A, LAUER A, DEICHMANN R, et al. Signal variance-based collateral index in DSC perfusion: A novel method to assess leptomeningeal collateralization in acute ischaemic stroke[J]. J Cereb Blood Flow Metab, 2020, 40(3): 574-587. DOI: 10.1177/0271678X19831024.
[47]
KONG J, ZHANG D. Current status and quality of radiomics studies for predicting outcome in acute ischemic stroke patients: a systematic review and meta-analysis[J/OL]. Front Neurol, 2024, 14: 133585 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789857. DOI: 10.3389/fneur.2023.1335851.
[48]
Chinese Stroke Society, Neurological Intervention Branch of Chinese Stroke Society, Interventional Group of Stroke Prevention and Control Professional Committee of Chinese Preventive Medical Association. Chinese Guidelines for Endovascular Treatment of Acute Ichaemic Stroke 2023[J]. Chin J Stroke, 2023, 18: 684-711. DOI: 10.3969/j.issn.16735765.2023.06.010.
[49]
YU H, LI Y, FENG Y, et al. Enhanced arterial spin labeling magnetic resonance imaging of cerebral blood flow of the anterior and posterior circulations in patients with intracranial atherosclerotic stenosis[J/OL]. Front Neurosci, 2022, 15: 823876 [2024-04-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8891638. DOI: 10.3389/fnins.2021.823876.
[50]
LIANG Y X, CUI B X, ZHANG M, et al. Advances in MR arterial spin labeling sequence in the surgical management of ischemic cerebrovascular disease[J]. Chin J Cerebrovasc Dis, 2023, 20(11): 761-768. DOI: 10.3969/j.issn.1672-5921.2023.11.006.
[51]
WOLMAN D N, MORAFF A M, HEIT J J. Anatomy of the intracranial arteries: The anterior intracranial and vertebrobasilar circulations[J]. Neuroimaging Clin N Am, 2022, 32(3): 617-636. DOI: 10.1016/j.nic.2022.04.007.
[52]
FAN A P, GUO J, KHALIGHI M M, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: A simultaneous positron emission tomography/ MRI study[J]. Stroke, 2017, 48(9): 2441-2449. DOI: 10.1161/STROKEAHA.117.017773.
[53]
LIU J, LIN C, MINUTIA, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
[54]
LEGRAND L, LE BERRE A, SENERS P, et al. FLAIR vascular hyperintensities as a surrogate of collaterals in acute stroke: DWI matters[J]. AJNR Am J Neuroradiol, 2023, 44(1): 26-32. DOI: 10.3174/ajnr.A7733.
[55]
OUYANG F, WANG B, CHEN Y, et al. Research progress of magnetic resonance imaging in predicting the prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(7): 147-151. DOI: 10.12015/issn.1674-8034.2022.07.029.
[56]
CHEN Q, ZHOU J, ZHANG H, et al. One-step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting-state fMRI study[J]. J Magn Reson Imaging, 2019, 50(1): 221-229. DOI: 10.1002/jmri.26571.
[57]
RAYNALD, ZHAO X, MENG L, et al. A novel computational fluid dynamic method and validation for assessing distal cerebrovascular microcirculatory resistance[J/OL]. Comput Methods Programs Biomed, 2023, 230: 107338 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/36640605. DOI: 10.1016/j.cmpb.2023.107338.
[58]
ZHANG D, WU X, TANG J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[59]
NGO M T, LEE U Y, HA H, et al. Comparison of hemodynamic visualization in cerebral arteries: Can magnetic resonance imaging replace computational fluid dynamics?[J/OL]. J Pers Med, 2021, 11(4): 253 [2024-04-18]. https://pubmed.ncbi.nlm.nih.gov/33808514. DOI: 10.3390/jpm11040253.
[60]
WANG M, YANG Y, ZHANG W, et al. Risk factors for cerebrovascular events in Moyamoya angiopathy using 4D flow MRI: A pilot study[J]. J Magn Reson Imaging, 2023, 58(1): 61-68. DOI: 10.1002/jmri.28522.

PREV Research progress of brain MRI on the central thalamo-frontal-somatosensory cortex circuit in lifelong premature ejaculation
NEXT Value of multiparametric CMR in assessing subclinical myocardial injury in patients with multiple myeloma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn