Share:
Share this content in WeChat
X
Review
Value of multiparametric CMR in assessing subclinical myocardial injury in patients with multiple myeloma
HAN Kunwei  FU Bing  YANG Zhi  WEN Miao 

Cite this article as: HAN K W, FU B, YANG Z, et al. Value of multiparametric CMR in assessing subclinical myocardial injury in patients with multiple myeloma[J]. Chin J Magn Reson Imaging, 2024, 15(10): 187-192. DOI:10.12015/issn.1674-8034.2024.10.032.


[Abstract] People with multiple myeloma (MM) combined with myocardial injury tend to have a poorer prognosis and higher mortality. Cardiac magnetic resonance (CMR) can not only characterise and quantify myocardial amyloid deposition in MM patients, but also perform characteristic tissue imaging, which can be used to detect early cardiac injury in MM patients, and is considered to be the "gold standard" for assessing cardiac ejection function. In this paper, we reviewed the use of CMR sequences and parameters in the early diagnosis, differential diagnosis and prognostic assessment of myocardial injury complicated by MM, in order to help clinicians and imaging physicians to further understand and promote the application and development of CMR in myocardial injury in MM.
[Keywords] multiple myeloma;myocardial amyloidosis;magnetic resonance imaging;early diagnosis;prognosis

HAN Kunwei1   FU Bing2*   YANG Zhi2   WEN Miao2  

1 Medicine Faculty of Medicine and Life Sciences, Chengdu University of Traditional Chinese, Chengdu 611130, China

2 Department of Radiology, Chengdu Fifth Feople's Hospital, Chengdu 611130, China

Corresponding author: FU B, E-mail: 1125173278@qq.com

Conflicts of interest   None.

Received  2024-06-24
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.032
Cite this article as: HAN K W, FU B, YANG Z, et al. Value of multiparametric CMR in assessing subclinical myocardial injury in patients with multiple myeloma[J]. Chin J Magn Reson Imaging, 2024, 15(10): 187-192. DOI:10.12015/issn.1674-8034.2024.10.032.

[1]
HONG Y, GUO J Z, CHEN W C, et al. Clinical characteristics and prognosis of multiple myeloma patients associated light chain amyloidosis[J]. Chin J Nephrol Dial Transplant, 2023, 32(5): 406-411. DOI: 10.3969/j.issn.1006-298X.2023.05.002.
[2]
COWAN A J, GREEN D J, KWOK M, et al. Diagnosis and management of multiple myeloma: a review[J]. JAMA, 2022, 327(5): 464-477. DOI: 10.1001/jama.2022.0003.
[3]
HOU W J, GONG Y J. Application of cardiac magnetic resonance in cardiac amyloidosis[J]. Adv Cardiovasc Dis, 2023, 44(9): 796-799. DOI: 10.16806/j.cnki.issn.1004-3934.2023.09.007.
[4]
BENZ D C, GRÄNI C, ANTIOCHOS P, et al. Cardiac magnetic resonance biomarkers as surrogate endpoints in cardiovascular trials for myocardial diseases[J]. Eur Heart J, 2023, 44(45): 4738-4747. DOI: 10.1093/eurheartj/ehad510.
[5]
JAISWAL V, AGRAWAL V, KHULBE Y, et al. Cardiac amyloidosis and aortic stenosis: a state-of-the-art review[J/OL]. Eur Heart J Open, 2023, 3(6): oead106 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/37941729/. DOI: 10.1093/ehjopen/oead106.
[6]
MUCHTAR E, DISPENZIERI A, MAGEN H, et al. Systemic amyloidosis from A (AA) to T (ATTR): a review[J]. J Intern Med, 2021, 289(3): 268-292. DOI: 10.1111/joim.13169.
[7]
SIDDIQI O K, RUBERG F L. Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment[J]. Trends Cardiovasc Med, 2018, 28(1): 10-21. DOI: 10.1016/j.tcm.2017.07.004.
[8]
MORFINO P, AIMO A, FRANZINI M, et al. Pathophysiology of cardiac amyloidosis[J]. Heart Fail Clin, 2024, 20(3): 261-270. DOI: 10.1016/j.hfc.2024.02.002.
[9]
LIAO R, JAIN M, TELLER P, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts[J]. Circulation, 2001, 104(14): 1594-1597.
[10]
GARCIA-PAVIA P, RAPEZZI C, ADLER Y, et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur J Heart Fail, 2021, 23(4): 512-526. DOI: 10.1002/ejhf.2140.
[11]
MEIER C, YILMAZ A. Diagnostik der kardialen amyloidose[J]. Die Inn Med, 2023, 64(9): 830-841. DOI: 10.1007/s00108-023-01571-5.
[12]
BLOOM M W, GOREVIC P D. Cardiac amyloidosis[J/OL]. Ann Intern Med, 2023, 176(3): ITC33-ITC48 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/36913688/. DOI: 10.7326/AITC202303210.
[13]
BRIASOULIS A, KOUREK C, PAPAMICHAIL A, et al. Arrhythmias in patients with cardiac amyloidosis: a comprehensive review on clinical management and devices[J/OL]. J Cardiovasc Dev Dis, 2023, 10(8): 337 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/37623350/. DOI: 10.3390/jcdd10080337.
[14]
YANG H, LI R. Progress in diagnosis and treatment of myocardial amyloidosis[J]. Chin Circ J, 2022, 37(6): 652-656. DOI: 10.3969/j.issn.1000-3614.2022.06.015.
[15]
PATEL A R, KRAMER C M. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy[J]. JACC Cardiovasc Imaging, 2017, 10(10Pt A): 1180-1193. DOI: 10.1016/j.jcmg.2017.08.005.
[16]
BASHARAT S A, HSIUNG I, GARG J, et al. Arrhythmogenic cardiomyopathy: evolving diagnostic criteria and insight from cardiac magnetic resonance imaging[J]. Heart Fail Clin, 2023, 19(4): 429-444. DOI: 10.1016/j.hfc.2023.03.006.
[17]
RUSSO V, LOVATO L, LIGABUE G. Cardiac MRI: technical basis[J]. Radiol Med, 2020, 125(11): 1040-1055. DOI: 10.1007/s11547-020-01282-z.
[18]
KNIGHT D S, ZUMBO G, BARCELLA W, et al. Cardiac structural and functional consequences of amyloid deposition by cardiac magnetic resonance and echocardiography and their prognostic roles[J]. JACC Cardiovasc Imaging, 2019, 12(5): 823-833. DOI: 10.1016/j.jcmg.2018.02.016.
[19]
BURRAGE M K, FERREIRA V M. Cardiovascular magnetic resonance for the differentiation of left ventricular hypertrophy[J]. Curr Heart Fail Rep, 2020, 17(5): 192-204. DOI: 10.1007/s11897-020-00481-z.
[20]
PATIL D, BHATT L K. Novel therapeutic avenues for hypertrophic cardiomyopathy[J]. Am J Cardiovasc Drugs, 2023, 23(6): 623-640. DOI: 10.1007/s40256-023-00609-1.
[21]
GANNON M P, SISON C P, SABA S G. Regional analysis of myocardial strain to wall thickness ratio in cardiac amyloidosis and hypertrophic cardiomyopathy[J]. J Thorac Imaging, 2024, 39(4): 255-264. DOI: 10.1097/RTI.0000000000000772.
[22]
NIMARKO A F, GARRETT A S, CARLSON G A, et al. Neural correlates of emotion processing predict resilience in youth at familial risk for mood disorders[J]. Dev Psychopathol, 2019, 31(3): 1037-1052. DOI: 10.1017/S0954579419000579.
[23]
HE J K, CUI C, MA W, et al. Cardiac MR tissue tracking technique for quantitatively evaluating myocardial strain of cardiac amyloidosis patients[J]. Chin J Interv Imag Ther, 2024, 21(1): 42-47. DOI: 10.13929/j.issn.1672-8475.2024.01.009.
[24]
GUO Y Y, TAN L H, JIANG M C, et al. Evaluation of myocardial strain differences of cardiac amyloidosis and other left ventricular hypertrophy diseases with cardiovascular magnetic resonance tissue tracking technique[J]. Chin J Med Imag Technol, 2020, 36(3): 382-386. DOI: 10.13929/j.issn.1003-3289.2020.03.015.
[25]
PHELAN D, COLLIER P, THAVENDIRANATHAN P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis[J]. Heart, 2012, 98(19): 1442-1448. DOI: 10.1136/heartjnl-2012-302353.
[26]
ODA S, UTSUNOMIYA D, NAKAURA T, et al. Identification and assessment of cardiac amyloidosis by myocardial strain analysis of cardiac magnetic resonance imaging[J]. Circ J, 2017, 81(7): 1014-1021. DOI: 10.1253/circj.CJ-16-1259.
[27]
TERNACLE J, BODEZ D, GUELLICH A, et al. Causes and consequences of longitudinal LV dysfunction assessed by 2D strain echocardiography in cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2016, 9(2): 126-138. DOI: 10.1016/j.jcmg.2015.05.014.
[28]
BRAVO P E, FUJIKURA K, KIJEWSKI M F, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1165-1173. DOI: 10.1016/j.jcmg.2018.06.016.
[29]
RAPEZZI C, FONTANA M. Relative left ventricular apical sparing of longitudinal strain in cardiac amyloidosis: is it just amyloid infiltration?[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1174-1176. DOI: 10.1016/j.jcmg.2018.07.007.
[30]
SIVAPATHAN S, GEENTY P, DESHMUKH T, et al. Alterations in multi-layer strain in AL amyloidosis[J]. Amyloid, 2022, 29(2): 128-136. DOI: 10.1080/13506129.2022.2026914.
[31]
ZHANG L S, GAO F B. Application value of cardiac magnetic resonance in dilated cardiomyopathy[J]. Int J Med Radiol, 2022, 45(2): 157-162, 200. DOI: 10.19300/j.2022.Z19373.
[32]
LI X M, JIANG L, MIN C Y, et al. Myocardial perfusion imaging by cardiovascular magnetic resonance: research progress and current implementation[J/OL]. Curr Probl Cardiol, 2023, 48(6): 101665 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/36828047/. DOI: 10.1016/j.cpcardiol.2023.101665.
[33]
SEWARD J B, CASACLANG-VERZOSA G. Infiltrative cardiovascular diseases: cardiomyopathies that look alike[J]. J Am Coll Cardiol, 2010, 55(17): 1769-1779. DOI: 10.1016/j.jacc.2009.12.040.
[34]
CHACKO L, KOTECHA T, IOANNOU A, et al. Myocardial perfusion in cardiac amyloidosis[J]. Eur J Heart Fail, 2024, 26(3): 598-609. DOI: 10.1002/ejhf.3137.
[35]
DORBALA S, VANGALA D, BRUYERE J, et al. Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis[J]. JACC Heart Fail, 2014, 2(4): 358-367. DOI: 10.1016/j.jchf.2014.03.009.
[36]
KAUR D, TIWANA H, STINO A, et al. Autonomic neuropathies[J]. Muscle Nerve, 2021, 63(1): 10-21. DOI: 10.1002/mus.27048.
[37]
LI R, YANG Z G, WEN L Y, et al. Regional myocardial microvascular dysfunction in cardiac amyloid light-chain amyloidosis: assessment with 3T cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 16 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/27048459/. DOI: 10.1186/s12968-016-0240-7.
[38]
WU X Q, FENG Y L, LI C P, et al. The advances in cardiovascular magnetic resonance imaging for light-chain and transthyretin-related amyloidosis[J]. Chin J Magn Reson Imag, 2020, 11(8): 707-711. DOI: 10.12015/issn.1674-8034.2020.08.028.
[39]
MARTINEZ-NAHARRO A, BAKSI A J, HAWKINS P N, et al. Diagnostic imaging of cardiac amyloidosis[J]. Nat Rev Cardiol, 2020, 17(7): 413-426. DOI: 10.1038/s41569-020-0334-7.
[40]
AQUARO G D, DE GORI C, FAGGIONI L, et al. Diagnostic and prognostic role of late gadolinium enhancement in cardiomyopathies[J/OL]. Eur Heart J Suppl, 2023, 25(Suppl C): C130-C136 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/37125322/. DOI: 10.1093/eurheartjsupp/suad015.
[41]
LI C F, CHEN W J, XIE R G, et al. MRI characteristics of cardiac amyloidosis[J]. J Chin Pract Diagn Ther, 2021, 35(10): 988-990. DOI: 10.13507/j.issn.1674-3474.2021.10.005.
[42]
DUNGU J N, VALENCIA O, PINNEY J H, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis[J]. JACC Cardiovasc Imaging, 2014, 7(2): 133-142. DOI: 10.1016/j.jcmg.2013.08.015.
[43]
KWONG R Y, HEYDARI B, ABBASI S, et al. Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function[J]. Am J Cardiol, 2015, 116(4): 622-629. DOI: 10.1016/j.amjcard.2015.05.021.
[44]
FONTANA M, PICA S, REANT P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis[J]. Circulation, 2015, 132(16): 1570-1579. DOI: 10.1161/CIRCULATIONAHA.115.016567.
[45]
FENG Y L, WU X Q, ZHANG T Y, et al. Cardiac MR late gadolinium enhancement in evaluation on prognosis of patients with cardiac amyloidosis: Meta-analysis[J]. Chin J Med Imag Technol, 2022, 38(1): 59-63. DOI: 10.13929/j.issn.1003-3289.2022.01.014.
[46]
LI X, LI J, LIN L, et al. Left and right ventricular myocardial deformation and late gadolinium enhancement: incremental prognostic value in amyloid light-chain amyloidosis[J]. Cardiovasc Diagn Ther, 2020, 10(3): 470-480. DOI: 10.21037/cdt-20-181.
[47]
WAN K, SUN J Y, HAN Y C, et al. Increased prognostic value of query amyloid late enhancement score in light-chain cardiac amyloidosis[J]. Circ J, 2018, 82(3): 739-746. DOI: 10.1253/circj.CJ-17-0464.
[48]
LIAO X, ZENG M, ZHANG J M, et al. Tentative discussion on cardiac magnetic resonance in differentiating common types of cardiac amyloidosis[J]. Chin J Magn Reson Imag, 2021, 12(9): 30-35. DOI: 10.12015/issn.1674-8034.2021.09.007.
[49]
LIU Y M, ZHU J F, CHEN M, et al. Value of MRI myocardial strain in cardiac amyloidosis and its correlation with native T1 and extracellular volume fraction[J]. Chin Comput Med Imag, 2021, 27(6): 516-522. DOI: 10.3969/j.issn.1006-5741.2021.06.009.
[50]
PAPATHANASIOU M, SCHLENDER L S, JOHNSON V L, et al. Arrhythmias and amyloidosis[J]. Herzschrittmacherther Elektrophysiol, 2024, 35(3): 199-204. DOI: 10.1007/s00399-024-01016-y.
[51]
PAN J A, KERWIN M J, SALERNO M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. DOI: 10.1016/j.jcmg.2020.03.010.
[52]
DUCA F, RETTL R, KRONBERGER C, et al. Myocardial structural and functional changes in cardiac amyloidosis: insights from a prospective observational patient registry[J]. Eur Heart J Cardiovasc Imaging, 2023, 25(1): 95-104. DOI: 10.1093/ehjci/jead188.
[53]
THOMPSON E W, KAMESH IYER S, SOLOMON M P, et al. Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 120 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/34689798/. DOI: 10.1186/s12968-021-00813-5.
[54]
ZHANG X N, JIANG Y M, ZHAO L L ,et al. Differential diagnostic value of T1 mapping and tissue tracking techniques in diseases associated with left ventricular hypertrophy[J]. Chin J Magn Reson Imag, 2022, 13(12): 32-37. DOI: 10.12015/issn.1674-8034.2022.12.006.
[55]
WONG T C, PIEHLER K, MEIER C G, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality[J]. Circulation, 2012, 126(10): 1206-1216. DOI: 10.1161/CIRCULATIONAHA.111.089409.
[56]
PALMER C, TRUONG V T, SLIVNICK J A, et al. Atrial function and geometry differences in transthyretin versus immunoglobulin light chain amyloidosis: a cardiac magnetic resonance study[J/OL]. Sci Rep, 2022, 12(1): 140 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/34996915/. DOI: 10.1038/s41598-021-03359-9.
[57]
BRIASOULIS A, LAMA N, REMPAKOS A, et al. Diagnostic and prognostic value of non-late gadolinium enhancement cardiac magnetic resonance parameters in cardiac amyloidosis[J/OL]. Curr Probl Cardiol, 2023, 48(4): 101573 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/36586704/. DOI: 10.1016/j.cpcardiol.2022.101573.
[58]
GRAZZINI G, PRADELLA S, BANI R, et al. The role of T2 mapping in cardiac amyloidosis[J/OL]. Diagnostics, 2024, 14(10): 1048 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/38786346/. DOI: 10.3390/diagnostics14101048.
[59]
GOŚCINIAK P, BARON T, MILCZAREK S, et al. Updates for the diagnosis and management of cardiac amyloidosis[J]. Adv Clin Exp Med, 2022, 31(2): 175-185. DOI: 10.17219/acem/142252.
[60]
KOTECHA T, MARTINEZ-NAHARRO A, TREIBEL T A, et al. Myocardial edema and prognosis in amyloidosis[J]. J Am Coll Cardiol, 2018, 71(25): 2919-2931. DOI: 10.1016/j.jacc.2018.03.536.
[61]
SPARROW P, AMIRABADI A, SUSSMAN M S, et al. Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis[J]. J Magn Reson Imaging, 2009, 30(5): 942-946. DOI: 10.1002/jmri.21918.
[62]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 75 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/28992817/. DOI: 10.1186/s12968-017-0389-8.
[63]
WU X D, JING Y F, PEI F Y, et al. Value of magnetic resonance imaging T2* tests in detecting heart and liver iron overload in patients with β-thalassemia major[J]. J South Med Univ, 2013, 33(2): 249-252. DOI: 10.3969/j.issn.1673-4254.2013.02.19.
[64]
LUO Q S, XIAO Z J. The value of serum ferritin and NSE expressions in the prognosis evaluation of multiple myeloma[J]. Labeled Immunoass Clin Med, 2021, 28(1): 76-80. DOI: 10.11748/bjmy.issn.1006-1703.2021.01.017.
[65]
CZERWIŃSKA-LEDWIG O, JURCZYSZYN A, PIOTROWSKA A, et al. The effect of a six-week Nordic walking training cycle on oxidative damage of macromolecules and iron metabolism in older patients with multiple myeloma in remission-randomized clinical trial[J/OL]. Int J Mol Sci, 2023, 24(20): 15358 [2024-06-23]. https://pubmed.ncbi.nlm.nih.gov/37895038/. DOI: 10.3390/ijms242015358.

PREV Recent advances on magnetic resonance imaging technology in the evaluation of intracranial atherosclerotic disease
NEXT Advances in 4D Flow CMR quantitative analysis of intracardiac hemodynamics
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn