Share:
Share this content in WeChat
X
Review
Advances in ultrahigh-field MRI with 7.0 T and above in the musculoskeletal system
RAN Yunlong  JIN Feng  BAI Xiaolong  TIAN Xiaoyan  GUO Huanxuan  LI Zhenxin 

Cite this article as: RAN Y L, JIN F, BAI X L, et al. Advances in ultrahigh-field MRI with 7.0 T and above in the musculoskeletal system[J]. Chin J Magn Reson Imaging, 2024, 15(10): 217-221. DOI:10.12015/issn.1674-8034.2024.10.037.


[Abstract] With the continuous improvement of magnetic field strength of MRI, intelligent scanning technology, innovation and optimization of scanning sequences, and new technologies, the application of MRI in skeletal and muscular system is also rapidly changing. The improvement of signal-to-noise ratio of ultra-high-field MRI of 7.0 T and above is particularly significant in the imaging of the skeletal muscular system, and the ultra-high-resolution image is conducive to the anatomical structure of cartilage, bone, ligaments, tendons, menisci, and so on. Ultra-high resolution images facilitate the observation of details of cartilage, bone, ligament, tendon, meniscus and other anatomical structures, the display and presentation of lesion information and advanced functional imaging, thus improving the specificity and sensitivity of diagnosis. This paper also discusses the shortcomings of ultra-high-field MRI in clinical diagnosis, disease monitoring and scientific research, which can be developed in the direction of optimizing imaging sequences, reducing artifacts and improving magnetic field uniformity in the future. The aim of this paper is to provide clinicians and researchers with the latest progress and prospects of ultrahigh-field MRI applications, in order to promote the wide application and development of ultrahigh-field MRI in medical imaging.
[Keywords] musculoskeletal system;cartilage;muscle;magnetic resonance imaging;ultra-high field magnetic resonance imaging

RAN Yunlong   JIN Feng*   BAI Xiaolong   TIAN Xiaoyan   GUO Huanxuan   LI Zhenxin  

Department of Diagnostic Imaging, Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China

Corresponding author: JIN F, E-mail:doctorjinfeng@163.com

Conflicts of interest   None.

Received  2024-06-10
Accepted  2024-10-10
DOI: 10.12015/issn.1674-8034.2024.10.037
Cite this article as: RAN Y L, JIN F, BAI X L, et al. Advances in ultrahigh-field MRI with 7.0 T and above in the musculoskeletal system[J]. Chin J Magn Reson Imaging, 2024, 15(10): 217-221. DOI:10.12015/issn.1674-8034.2024.10.037.

[1]
TRATTNIG S, HANGEL G, ROBINSON S D, et al. Ultrahigh-field MRI: where it really makes a difference[J/OL]. Radiologie, 2023 [2024-04-05]. https://www.ncbi.nlm.nih.gov/pubmed/37584681. DOI: 10.1007/s00117-023-01184-x.
[2]
BRINKHOF S, NIZAK R, SIM S, et al. In vivo biochemical assessment of cartilage with gagCEST MRI: correlation with cartilage properties[J/OL]. NMR Biomed, 2021, 34(3): e4463 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33352622/. DOI: 10.1002/nbm.4463.
[3]
ZBÝŇ Š, LUDWIG K D, WATKINS L E, et al. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo 23Na MRI study at 10.5 T[J]. Magn Reson Med, 2024, 91(3): 1099-1114. DOI: 10.1002/mrm.29930.
[4]
KRUMPOLEC P, KLEPOCHOVÁ R, JUST I, et al. Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors[J/OL]. Front Physiol, 2020, 11: 644 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32695010/. DOI: 10.3389/fphys.2020.00644.
[5]
JIN J, WEBER E, DESTRUEL A, et al. An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures[J]. Magn Reson Med, 2018, 79(3): 1804-1816. DOI: 10.1002/mrm.26804.
[6]
TREUTLEIN C, BÄUERLE T, NAGEL A M, et al. Comprehensive assessment of knee joint synovitis at 7 T MRI using contrast-enhanced and non-enhanced sequences[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 116 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32085776/. DOI: 10.1186/s12891-020-3122-y.
[7]
JANSSEN M P F, PETERS M J M, STEIJVERS-PEETERS E G M, et al. 7-tesla MRI evaluation of the knee, 25 years after cartilage repair surgery: the influence of intralesional osteophytes on biochemical quality of cartilage[J/OL]. Cartilage, 2021, 13(1_suppl): 767S-779S [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/34836478/. DOI: 10.1177/19476035211060506.
[8]
LI Y, KANG P D, ZHOU Z K, et al. Magnetic resonance imaging at 7.0 T for evaluation of early lesions of epiphyseal plate and epiphyseal end in a rat model of Kashin-Beck disease[J/OL]. BMC Musculoskelet Disord, 2020, 21(1): 540 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32787885/. DOI: 10.1186/s12891-020-03559-w.
[9]
ZHEN Z M, CHEN W. Osteochondritis dissecans of the knee at 7-T trabecular bone MRI[J/OL]. Radiology, 2024, 311(3): e240048 [2024-07-05]. https://pubmed.ncbi.nlm.nih.gov/38860896/. DOI: 10.1148/radiol.240048.
[10]
KARJALAINEN V P, KESTILÄ I, FINNILÄ M A, et al. Quantitative three-dimensional collagen orientation analysis of human meniscus posterior horn in health and osteoarthritis using micro-computed tomography[J]. Osteoarthritis Cartilage, 2021, 29(5): 762-772. DOI: 10.1016/j.joca.2021.01.009.
[11]
KAJABI A W, ZBÝŇ Š, SMITH J S, et al. Seven tesla knee MRI T2*-mapping detects intrasubstance meniscus degeneration in patients with posterior root tears[J/OL]. Radiol Adv, 2024, 1(1): umae005 [2024-09-08]. https://www.ncbi.nlm.nih.gov/pubmed/38855428. DOI: 10.1093/radadv/umae005.
[12]
SEVERYNS M, ZOT F, HARIKA-GERMANEAU G, et al. Extrusion and meniscal mobility evaluation in case of ramp lesion injury: a biomechanical feasibility study by 7T magnetic resonance imaging and digital volume correlation[J/OL]. Front Bioeng Biotechnol, 2024, 11: 1289290 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/38249805/. DOI: 10.3389/fbioe.2023.1289290.
[13]
GERMANN C, GALLEY J, FALKOWSKI A L, et al. Ultra-high resolution 3D MRI for chondrocalcinosis detection in the knee-a prospective diagnostic accuracy study comparing 7-tesla and 3-tesla MRI with CT[J]. Eur Radiol, 2021, 31(12): 9436-9445. DOI: 10.1007/s00330-021-08062-x.
[14]
GÖTESTRAND S, BJÖRKMAN A, BJÖRKMAN-BURTSCHER I M, et al. Visualization of wrist anatomy-a comparison between 7T and 3T MRI[J]. Eur Radiol, 2022, 32(2): 1362-1370. DOI: 10.1007/s00330-021-08165-5.
[15]
HEISS R, LIBRIMIR A, LUTTER C, et al. MRI of finger pulleys at 7T-direct characterization of pulley ruptures in an ex vivo model[J/OL]. Diagnostics, 2021, 11(7): 1206 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/34359289/. DOI: 10.3390/diagnostics11071206.
[16]
LAZIK-PALM A, KRAFF O, RIETSCH S H G, et al. 7-T clinical MRI of the shoulder in patients with suspected lesions of the rotator cuff[J/OL]. Eur Radiol Exp, 2020, 4(1): 10 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32030499/. DOI: 10.1186/s41747-019-0142-1.
[17]
FRANETTOVICH SMITH M M, ELLIOTT J M, AL-NAJJAR A, et al. New insights into intrinsic foot muscle morphology and composition using ultra-high-field (7-Tesla) magnetic resonance imaging[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 97 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33478467/. DOI: 10.1186/s12891-020-03926-7.
[18]
HEISS R, HÖGER S A, UDER M, et al. Early functional and morphological changes of calf muscles in delayed onset muscle soreness (DOMS) assessed with 7T MRI[J/OL]. Anat Anz Off Organ Anat Gesell, 2024, 251: 152181 [2024-07-05]. https://www.ncbi.nlm.nih.gov/pubmed/37871829. DOI: 10.1016/j.aanat.2023.152181.
[19]
GERMANN C, SUTTER R, NANZ D. Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers[J]. Skeletal Radiol, 2021, 50(6): 1249-1255. DOI: 10.1007/s00256-020-03667-7.
[20]
WIESMUELLER M, MEIXNER C R, WEBER M, et al. Time-of-flight angiography in ultra-high-field 7 T MRI for the evaluation of peroneal perforator arteries before osseomyocutaneous flap surgery[J]. Invest Radiol, 2023, 58(3): 216-222. DOI: 10.1097/RLI.0000000000000926.
[21]
SADEGHI-TARAKAMEH A, JUNGST S, LANAGAN M, et al. A nine-channel transmit/receive array for spine imaging at 10.5 T: introduction to a nonuniform dielectric substrate antenna[J]. Magn Reson Med, 2022, 87(4): 2074-2088. DOI: 10.1002/mrm.29096.
[22]
RIETSCH S H G, BRUNHEIM S, ORZADA S, et al. Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine[J]. Magn Reson Med, 2019, 82(2): 796-810. DOI: 10.1002/mrm.27731.
[23]
CLARKE M A, WITT A A, ROBISON R K, et al. Cervical spinal cord susceptibility-weighted MRI at 7T: application to multiple sclerosis[J/OL]. NeuroImage, 2023, 284: 120460 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/37979894/. DOI: 10.1016/j.neuroimage.2023.120460.
[24]
LÉVY S, ROCHE P H, GUYE M, et al. Feasibility of human spinal cord perfusion mapping using dynamic susceptibility contrast imaging at 7T: preliminary results and identified guidelines[J]. Magn Reson Med, 2021, 85(3): 1183-1194. DOI: 10.1002/mrm.28559.
[25]
GALLEY J, SUTTER R, GERMANN C, et al. High-resolution in vivo MR imaging of intraspinal cervical nerve rootlets at 3 and 7 Tesla[J]. Eur Radiol, 2021, 31(7): 4625-4633. DOI: 10.1007/s00330-020-07557-3.
[26]
SVEINSSON B, ROWE O E, STOCKMANN J P, et al. Feasibility of simultaneous high-resolution anatomical and quantitative magnetic resonance imaging of sciatic nerves in patients with Charcot-Marie-Tooth type 1A (CMT1A) at 7T[J]. Muscle Nerve, 2022, 66(2): 206-211. DOI: 10.1002/mus.27647.
[27]
MAHMUD S Z, DENNEY T S, BASHIR A. Feasibility of spinal cord imaging at 7 T using rosette trajectory with magnetization transfer preparation and compressed sensing[J/OL]. Sci Rep, 2023, 13(1): 8777 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37258697/. DOI: 10.1038/s41598-023-35853-7.
[28]
AIGNER C S, SÁNCHEZ ALARCON M F, D'ASTOUS A, et al. Calibration-free parallel transmission of the cervical, thoracic, and lumbar spinal cord at 7T[J]. Magn Reson Med, 2024, 92(4): 1496-1510. DOI: 10.1002/mrm.30137.
[29]
TAVANA S, MASOUROS S D, BAXAN N, et al. The effect of degeneration on internal strains and the mechanism of failure in human intervertebral discs analyzed using digital volume correlation (DVC) and ultra-high field MRI[J/OL]. Front Bioeng Biotechnol, 2021, 8: 610907 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/33553116/. DOI: 10.3389/fbioe.2020.610907.
[30]
ADEJUYIGBE B, KALLINI J, CHIOU D, et al. Osteoporosis: molecular pathology, diagnostics, and therapeutics[J/OL]. Int J Mol Sci, 2023, 24(19): 14583 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/37834025/. DOI: 10.3390/ijms241914583.
[31]
SOLDATI E, ROSSI F, VICENTE J, et al. Survey of MRI usefulness for the clinical assessment of bone microstructure[J/OL]. Int J Mol Sci, 2021, 22(5): 2509 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/33801539/. DOI: 10.3390/ijms22052509.
[32]
SOLDATI E, VICENTE J, GUENOUN D, et al. Validation and optimization of proximal femurs microstructure analysis using high field and ultra-high field MRI[J/OL]. Diagnostics, 2021, 11(9): 1603 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34573945/. DOI: 10.3390/diagnostics11091603.
[33]
SOLDATI E, PITHIOUX M, GUENOUN D, et al. Assessment of Bone Microarchitecture in Fresh Cadaveric Human Femurs: what Could Be the Clinical Relevance of Ultra-High Field MRI[J/OL]. Diagnostics, 2022, 12(2): 439 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/35204529/. DOI: 10.3390/diagnostics12020439.
[34]
SOLDATI E, ESCOFFIER L, GABRIEL S, et al. Assessment of in vivo bone microarchitecture changes in an anti-TNFα treated psoriatic arthritic patient[J/OL]. PLoS One, 2021, 16(5): e0251788 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34010320/. DOI: 10.1371/journal.pone.0251788.
[35]
JARRAYA M, HEISS R, DURYEA J, et al. Bone structure analysis of the radius using ultrahigh field (7T) MRI: relevance of technical parameters and comparison with 3T MRI and radiography[J/OL]. Diagnostics, 2021, 11(1): 110 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/33445536/. DOI: 10.3390/diagnostics11010110.
[36]
EINARSSON E, PETERSON P, ÖNNERFJORD P, et al. The role of cartilage glycosaminoglycan structure in gagCEST[J/OL]. NMR Biomed, 2020, 33(5): e4259 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/31999387/. DOI: 10.1002/nbm.4259.
[37]
EMIN S, OEI E H G, ENGLUND M, et al. Imaging-based assessment of fatty acid composition in human bone marrow adipose tissue at 7T: method comparison and in vivo feasibility[J]. Magn Reson Med, 2023, 90(1): 240-249. DOI: 10.1002/mrm.29623.
[38]
XU J D, CHUNG J J, JIN T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues[J/OL]. NMR Biomed, 2023, 36(6): e4671 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/34978371/. DOI: 10.1002/nbm.4671.
[39]
PAVULURI K, ROSENBERG J T, HELSPER S, et al. Amplified detection of phosphocreatine and creatine after supplementation using CEST MRI at high and ultrahigh magnetic fields[J/OL]. J Magn Reson, 2020, 313: 106703 [20024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32179431/. DOI: 10.1016/j.jmr.2020.106703.
[40]
TKOTZ K, LIEBERT A, GAST L V, et al. Multi-echo-based fat artifact correction for CEST MRI at 7 T[J]. Magn Reson Med, 2024, 91(2): 481-496. DOI: 10.1002/mrm.29863.
[41]
SCHMITZ-ABECASSIS B, NAJAC C, PLUGGE J, et al. Investigation of metabolite correlates of CEST in the human brain at 7 T[J/OL]. NMR Biomed, 2024, 37(5): e5104 [2024-09-08]. https://www.ncbi.nlm.nih.gov/pubmed/38258649. DOI: 10.1002/nbm.5104.
[42]
CHUNG J J, JIN T. Correction of the post-irradiation T1 relaxation effect for chemical exchange-sensitive MRI: a phantom study[J/OL]. Front Phys, 2022, 10: 1033767 [2024-04-06]. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.1033767/full. DOI: 10.3389/fphy.2022.1033767.
[43]
GAO T X, ZOU C Y, LI Y F, et al. A brief history and future prospects of CEST MRI in clinical non-brain tumor imaging[J/OL]. Int J Mol Sci, 2021, 22(21): 11559 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pubmed/34768990. DOI: 10.3390/ijms222111559.
[44]
GAST L V, PLATT T, NAGEL A M, et al. Recent technical developments and clinical research applications of sodium (23Na) MRI[J/OL]. Prog Nucl Magn Reson Spectrosc, 2023, 138/139: 1-51 [2024-09-08]. https://pubmed.ncbi.nlm.nih.gov/38065665/. DOI: 10.1016/j.pnmrs.2023.04.002.
[45]
WEBER M A, SEYLER L, NAGEL A M. 7 tesla chlorine (35Cl) and sodium (23Na) MR imaging of an enchondroma[J]. Rofo, 2021, 193(10): 1207-1211. DOI: 10.1055/a-1472-6730.
[46]
LADD M E, BACHERT P, MEYERSPEER M, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J/OL]. Prog Nucl Magn Reson Spectrosc, 2018, 109: 1-50 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/30527132/. DOI: 10.1016/j.pnmrs.2018.06.001.
[47]
KAN H E, KLOMP D W, WONG C S, et al. In vivo 31P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle[J]. NMR Biomed, 2010, 23(8): 995-1000. DOI: 10.1002/nbm.1517.
[48]
ZARIC O, BEIGLBÖCK H, JANACOVA V, et al. Repeatability assessment of sodium (23)Na MRI at 7.0T in healthy human calf muscle and preliminary results on tissue sodium concentrations in subjects with Addison's disease[J/OL]. BMC Musculoskelet Disord, 2022, 23(1): 925 [2024-04-06]. https://www.ncbi.nlm.nih.gov/pubmed/36266679. DOI: 10.1186/s12891-022-05879-5.
[49]
GAST L V, BAIER L M, MEIXNER C R, et al. MRI of potassium and sodium enables comprehensive analysis of ion perturbations in skeletal muscle tissue after eccentric exercise[J]. Invest Radiol, 2023, 58(4): 265-272. DOI: 10.1097/RLI.0000000000000931.
[50]
GERHALTER T, MARTY B, GAST L V, et al. Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients[J]. J Neurol, 2021, 268(3): 1076-1087. DOI: 10.1007/s00415-020-10254-2.
[51]
HUANG L, BAI J, ZONG R, et al. Sodium MRI at 7T for Early Response Evaluation of Intracranial Tumors following Stereotactic Radiotherapy Using the CyberKnife[J]. AJNR Am J Neuroradiol, 2022, 43(2): 181-187. DOI: 10.3174/ajnr.A7404.
[52]
EINARSSON E, SVENSSON J, FOLKESSON E, et al. Relating MR relaxation times of ex vivo meniscus to tissue degeneration through comparison with histopathology[J/OL]. Osteoarthr Cartil Open, 2020, 2(2): 100061 [2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/33972933/. DOI: 10.1016/j.ocarto.2020.100061.
[53]
GUENOUN D, WIRTH T, ROCHE D, et al. Ultra-high field magnetic resonance imaging of the quadriceps tendon enthesis in healthy subjects[J]. Surg Radiol Anat, 2023, 45(8): 1049-1054. DOI: 10.1007/s00276-023-03175-y.
[54]
ANZ A W, EDISON J, DENNEY T S, et al. 3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age[J]. Skeletal Radiol, 2020, 49(3): 443-452. DOI: 10.1007/s00256-019-03301-1.
[55]
MEIXNER C R, NAGEL A M, HÖGER S A, et al. Muscle perfusion and the effect of compression garments in delayed-onset muscle soreness assessed with arterial spin labeling magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(9): 4462-4473. DOI: 10.21037/qims-21-1104.
[56]
SCHEWZOW K, FIEDLER G B, MEYERSPEER M, et al. Dynamic ASL and T2-weighted MRI in exercising calf muscle at 7 T: a feasibility study[J]. Magn Reson Med, 2015, 73(3): 1190-1195. DOI: 10.1002/mrm.25242.
[57]
SCHMID A I, SCHEWZOW K, FIEDLER G B, et al. Exercising calf muscle T₂ changes correlate with pH, PCr recovery and maximum oxidative phosphorylation[J]. NMR Biomed, 2014, 27(5): 553-560. DOI: 10.1002/nbm.3092.
[58]
MAHMUD S Z, GLADDEN L B, KAVAZIS A N, et al. Simultaneous Measurement of Perfusion and T2* in Calf Muscle at 7T with Submaximal Exercise using Radial Acquisition[J/OL]. Sci Rep, 2020, 10(1): 6342 [2024-04-07]. https://pubmed.ncbi.nlm.nih.gov/32286372/. DOI: 10.1038/s41598-020-63009-4.
[59]
HEISS R, WEBER M A, BALBACH E L, et al. Variation in cartilage T2 and T2* mapping of the wrist: a comparison between 3- and 7-T MRI[J/OL]. Eur Radiol Exp, 2023, 7(1): 80 [2024-04-05]. https://www.ncbi.nlm.nih.gov/pubmed/38093075. DOI: 10.1186/s41747-023-00394-1.
[60]
PAYNE K, BHOSALE A A, ZHANG X L. Double cross magnetic wall decoupling for quadrature transceiver RF array coils using common-mode differential-mode resonators[J/OL]. J Magn Reson, 2023, 353: 107498 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37295282/. DOI: 10.1016/j.jmr.2023.107498.
[61]
DESTRUEL A, JIN J, WEBER E, et al. Integrated multi-modal antenna with coupled radiating structures (I-MARS) for 7T pTx body MRI[J]. IEEE Trans Med Imaging, 2022, 41(1): 39-51. DOI: 10.1109/TMI.2021.3103654.
[62]
GU Y N, WANG L L, YANG H Y, et al. Three-dimensional high-resolution T1 and T2 mapping of whole macaque brain at 9.4 T using magnetic resonance fingerprinting[J]. Magn Reson Med, 2022, 87(6): 2901-2913. DOI: 10.1002/mrm.29181.
[63]
GERMANN C, FALKOWSKI A L, VON DEUSTER C, et al. Basic and advanced metal-artifact reduction techniques at ultra-high field 7-T magnetic resonance imaging-phantom study investigating feasibility and efficacy[J]. Invest Radiol, 2022, 57(6): 387-398. DOI: 10.1097/RLI.0000000000000850.
[64]
HU R M, KLEIMAIER D, MALZACHER M, et al. X-nuclei imaging: current state, technical challenges, and future directions[J]. J Magn Reson Imaging, 2020, 51(2): 355-376. DOI: 10.1002/jmri.26780.
[65]
BOYD P S, BREITLING J, ZIMMERMANN F, et al. Dynamic glucose-enhanced (DGE) MRI in the human brain at 7 T with reduced motion-induced artifacts based on quantitative R1ρ mapping[J]. Magn Reson Med, 2020, 84(1): 182-191. DOI: 10.1002/mrm.28112.

PREV Evaluation mechanism and research progress of radiogenomics in urinary tumors
NEXT Application progress of IVIM imaging technology in evaluating physiological and pathological status of skeletal muscle
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn