Share:
Share this content in WeChat
X
Review
Application of radiomics in diagnosis and treatment of vertebral fracture
MA Tianci  GUO Yang  REN Shuai  WANG Lining  MA Yong  ZHANG Guannan 

Cite this article as: MA T C, GUO Y, REN S, et al. Application of radiomics in diagnosis and treatment of vertebral fracture[J]. Chin J Magn Reson Imaging, 2024, 15(10): 228-233. DOI:10.12015/issn.1674-8034.2024.10.039.


[Abstract] Osteoporosis, acute trauma and tumor infiltration are the common causes of vertebral fracture. The middle-aged and elderly people are the most prone to vertebral fractures. But at present, the clinical diagnosis of vertebral fracture is still insufficient, there is a certain rate of missed diagnosis. Therefore, early diagnosis, clear etiology and reasonable treatment of vertebral fractures are the top priority to reduce the pain of patients and improve the quality of life. As a new technique, radiomics has great potential and clinical value in diagnosing vertebral fracture, distinguishing the types of vertebral fracture, predicting the risk of vertebral fracture and refracture. In this article, we will review the current research status of radiology in the diagnosis and treatment of vertebral fracture, and discuss the limitations and future application value, in order to provide new ideas and new methods to promote the accurate diagnosis and treatment of vertebral fracture.
[Keywords] vertebral fracture;radiomics;diagnosis;fracture prediction

MA Tianci1   GUO Yang1   REN Shuai2   WANG Lining3   MA Yong3*   ZHANG Guannan1  

1 The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China

2 Radiology department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

3 School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China

Corresponding author: MA Y, E-mail: mayong@njucm.edu.cn

Conflicts of interest   None.

Received  2024-04-25
Accepted  2024-10-09
DOI: 10.12015/issn.1674-8034.2024.10.039
Cite this article as: MA T C, GUO Y, REN S, et al. Application of radiomics in diagnosis and treatment of vertebral fracture[J]. Chin J Magn Reson Imaging, 2024, 15(10): 228-233. DOI:10.12015/issn.1674-8034.2024.10.039.

[1]
EXPERT PANELS ON NEUROLOGICAL IMAGING I R, KHAN M A, JENNINGS J W, et al. ACR appropriateness criteria® management of vertebral compression fractures: 2022 update[J]. J Am Coll Radiol, 2023, 20(5S): S102-S124. DOI: 10.1016/j.jacr.2023.02.015.
[2]
ZHENG X Q, XU L, HUANG J, et al. Incidence and cost of vertebral fracture in urban China: a 5-year population-based cohort study[J]. Int J Surg, 2023, 109(7): 1910-1918. DOI: 10.1097/JS9.0000000000000411.
[3]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[4]
ZYLA J, MARCZYK M, PRAZUCH W, et al. Combining low-dose computer-tomography-based radiomics and serum metabolomics for diagnosis of malignant nodules in participants of lung cancer screening studies[J/OL]. Biomolecules, 2023, 14(1): 44 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/38254644/. DOI: 10.3390/biom14010044.
[5]
ZOU Y, CAI L K, CHEN C X, et al. Multi-task deep learning based on T2-Weighted Images for predicting Muscular-Invasive Bladder Cancer[J/OL]. Comput Biol Med, 2022, 151(Pt A): 106219 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/36343408/. DOI: 10.1016/j.compbiomed.2022.106219.
[6]
ZHU Y Q, MA Y, ZHAI Z Z, et al. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study[J]. Eur Radiol, 2024, 34(4): 2576-2589. DOI: 10.1007/s00330-023-10256-4.
[7]
ZHU H, HU M N, MA Y R, et al. Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage Ⅱ colorectal cancer patients[J/OL]. Cancer Imaging, 2023, 23(1): 74 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37537659/. DOI: 10.1186/s40644-023-00588-1.
[8]
XU F, XIONG Y C, YE G X, et al. Deep learning-based artificial intelligence model for classification of vertebral compression fractures: a multicenter diagnostic study[J/OL]. Front Endocrinol, 2023, 14: 1025749 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/37033240/. DOI: 10.3389/fendo.2023.1025749.
[9]
KIM D H, JEONG J G, KIM Y J, et al. Automated vertebral segmentation and measurement of vertebral compression ratio based on deep learning in X-ray images[J]. J Digit Imaging, 2021, 34(4): 853-861. DOI: 10.1007/s10278-021-00471-0.
[10]
CAVALLARO M, D'ANGELO T, ALBRECHT M H, et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures[J]. Eur Radiol, 2022, 32(1): 561-571. DOI: 10.1007/s00330-021-08081-8.
[11]
ZHENG J Y, LIU W Z, CHEN J N, et al. Differential diagnostic value of radiomics models in benign versus malignant vertebral compression fractures: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2024, 178: 111621 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/39018646/. DOI: 10.1016/j.ejrad.2024.111621.
[12]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[13]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[14]
DERCLE L, HENRY T, CARRÉ A, et al. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): state-of-the-art, challenges and perspectives[J]. Methods, 2021, 188: 44-60. DOI: 10.1016/j.ymeth.2020.07.003.
[15]
ROSENBERG G S, CINA A, SCHIRÓ G R, et al. Artificial intelligence accurately detects traumatic thoracolumbar fractures on sagittal radiographs[J/OL]. Medicina, 2022, 58(8): 998 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/35893113/. DOI: 10.3390/medicina58080998.
[16]
LI Y C, CHEN H H, HORNG-SHING LU H, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists?[J]. Clin Orthop Relat Res, 2021, 479(7): 1598-1612. DOI: 10.1097/CORR.0000000000001685.
[17]
CHEN H Y, HSU B W Y, YIN Y K, et al. Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs[J/OL]. PLoS One, 2021, 16(1): e0245992 [2024-04-25]. https://pubmed.ncbi.nlm.nih.gov/33507982/. DOI: 10.1371/journal.pone.0245992.
[18]
MURATA K, ENDO K, AIHARA T, et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography[J/OL]. Sci Rep, 2020, 10(1): 20031 [2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/33208824/. DOI: 10.1038/s41598-020-76866-w.
[19]
ZHOU Z Z, SUN Z Y, WANG Y M, et al. Kyphoplasty for occult and non-occult osteoporotic vertebral fractures: a retrospective study[J/OL]. J Int Med Res, 2020, 48(4): 300060519894764 [2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/31885305/. DOI: 10.1177/0300060519894764.
[20]
LI W G, ZENG R, LU Y, et al. The value of radiomics-based CT combined with machine learning in the diagnosis of occult vertebral fractures[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 819 [2024-05-11]. https://pubmed.ncbi.nlm.nih.gov/37848859/. DOI: 10.1186/s12891-023-06939-0.
[21]
HONG N, CHO S W, SHIN S, et al. Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography[J]. J Bone Miner Res, 2023, 38(6): 887-895. DOI: 10.1002/jbmr.4814.
[22]
SHEN L, GAO C, HU S D, et al. Using artificial intelligence to diagnose osteoporotic vertebral fractures on plain radiographs[J]. J Bone Miner Res, 2023, 38(9): 1278-1287. DOI: 10.1002/jbmr.4879.
[23]
RYU S M, LEE S, JANG M, et al. Diagnosis of osteoporotic vertebral compression fractures and fracture level detection using multitask learning with U-Net in lumbar spine lateral radiographs[J]. Comput Struct Biotechnol J, 2023, 21: 3452-3458. DOI: 10.1016/j.csbj.2023.06.017.
[24]
MCCARTHY J, DAVIS A. Diagnosis and management of vertebral compression fractures[J]. Am Fam Physician, 2016, 94(1): 44-50.
[25]
DEL LAMA R S, CANDIDO R M, CHIARI-CORREIA N S, et al. Computer-aided diagnosis of vertebral compression fractures using convolutional neural networks and radiomics[J]. J Digit Imaging, 2022, 35(3): 446-458. DOI: 10.1007/s10278-022-00586-y.
[26]
CHIARI-CORREIA N S, NOGUEIRA-BARBOSA M H, CHIARI- CORREIA R D, et al. A 3D radiomics-based artificial neural network model for benign versus malignant vertebral compression fracture classification in MRI[J]. J Digit Imaging, 2023, 36(4): 1565-1577. DOI: 10.1007/s10278-023-00847-4.
[27]
CHEE C G, YOON M A, KIM K W, et al. Combined radiomics-clinical model to predict malignancy of vertebral compression fractures on CT[J]. Eur Radiol, 2021, 31(9): 6825-6834. DOI: 10.1007/s00330-021-07832-x.
[28]
FOREMAN S C, SCHINZ D, HUSSEINI M EL, et al. Deep learning to differentiate benign and malignant vertebral fractures at multidetector CT[J/OL]. Radiology, 2024, 310(3): e231429 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/38530172/. DOI: 10.1148/radiol.231429.
[29]
FENG Q Q, XU S, GONG X L, et al. An MRI-based radiomics nomogram for differentiation of benign and malignant vertebral compression fracture[J]. Acad Radiol, 2024, 31(2): 605-616. DOI: 10.1016/j.acra.2023.07.011.
[30]
GENG W, ZHU J F, LI M, et al. Radiomics Based on Multimodal magnetic resonance imaging for the Differential Diagnosis of Benign and Malignant Vertebral Compression Fractures[J]. Orthop Surg, 2024, 16(10): 2464-2474. DOI: 10.1111/os.14148.
[31]
ZHANG H, YUAN G J, WANG C, et al. Differentiation of benign versus malignant indistinguishable vertebral compression fractures by different machine learning with MRI-based radiomic features[J]. Eur Radiol, 2023, 33(7): 5069-5076. DOI: 10.1007/s00330-023-09678-x.
[32]
LIU B B, JIN Y C, FENG S X, et al. Benign vs malignant vertebral compression fractures with MRI: a comparison between automatic deep learning network and radiologist's assessment[J]. Eur Radiol, 2023, 33(7): 5060-5068. DOI: 10.1007/s00330-023-09713-x.
[33]
HAARBURGER C, MÜLLER-FRANZES G, WENINGER L, et al. Radiomics feature reproducibility under inter-rater variability in segmentations of CT images[J/OL]. Sci Rep, 2020, 10(1): 12688 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/32728098/. DOI: 10.1038/s41598-020-69534-6.
[34]
YIP S S F, AERTS H J W L. Applications and limitations of radiomics[J]. Phys Med Biol, 2016, 61(13): R150-R166. DOI: 10.1088/0031-9155/61/13/R150.
[35]
PARK T, YOON M A, CHO Y C, et al. Automated segmentation of the fractured vertebrae on CT and its applicability in a radiomics model to predict fracture malignancy[J/OL]. Sci Rep, 2022, 12(1): 6735 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/35468985/. DOI: 10.1038/s41598-022-10807-7.
[36]
ZHANG Y, QI H R, ZHANG Y F, et al. Vertebral bone marrow edema in magnetic resonance imaging correlates with bone healing histomorphometry in (sub)acute osteoporotic vertebral compression fracture[J]. Eur Spine J, 2021, 30(9): 2708-2717. DOI: 10.1007/s00586-021-06814-3.
[37]
DUAN S, HUA Y C, CAO G M, et al. Differential diagnosis of benign and malignant vertebral compression fractures: comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics[J/OL]. Eur J Radiol, 2023, 165: 110899 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/37300935/. DOI: 10.1016/j.ejrad.2023.110899.
[38]
CHEN W J, LIU X, LI K H, et al. A deep-learning model for identifying fresh vertebral compression fractures on digital radiography[J]. Eur Radiol, 2022, 32(3): 1496-1505. DOI: 10.1007/s00330-021-08247-4.
[39]
ZHANG J, XIA L, TANG J, et al. Constructing a deep learning radiomics model based on X-ray images and clinical data for predicting and distinguishing acute and chronic osteoporotic vertebral fractures: a multicenter study[J]. Acad Radiol, 2024, 31(5): 2011-2026. DOI: 10.1016/j.acra.2023.10.061.
[40]
ZHANG H, XU R X, GUO X, et al. Deep learning-based automated high-accuracy location and identification of fresh vertebral compression fractures from spinal radiographs: a multicenter cohort study[J/OL]. Front Bioeng Biotechnol, 2024, 12: 1397003 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/38812917/. DOI: 10.3389/fbioe.2024.1397003.
[41]
YANG H, YAN S, LI J, et al. Prediction of acute versus chronic osteoporotic vertebral fracture using radiomics-clinical model on CT[J/OL]. Eur J Radiol, 2022, 149: 110197 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/35149339/. DOI: 10.1016/j.ejrad.2022.110197.
[42]
KANIS J A, HARVEY N C, COOPER C, et al. A systematic review of intervention thresholds based on FRAX: a report prepared for the National Osteoporosis Guideline Group and the International Osteoporosis Foundation[J/OL]. Arch Osteoporos, 2016, 11(1): 25 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/27465509/. DOI: 10.1007/s11657-016-0278-z.
[43]
YE C, LESLIE W D, MORIN S N, et al. Adjusting FRAX estimates of fracture probability based on a positive vertebral fracture assessment[J/OL]. JAMA Netw Open, 2023, 6(8): e2329253 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/37589976/. DOI: 10.1001/jamanetworkopen.2023.29253.
[44]
SCHINI M, JOHANSSON H, HARVEY N C, et al. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis[J]. J Endocrinol Invest, 2024, 47(3): 501-511. DOI: 10.1007/s40618-023-02219-9.
[45]
KONG S H, LEE J W, BAE B U, et al. Development of a spine X-ray-based fracture prediction model using a deep learning algorithm[J]. Endocrinol Metab, 2022, 37(4): 674-683. DOI: 10.3803/EnM.2022.1461.
[46]
WANG M M, CHEN X, CUI W J, et al. A computed tomography-based radiomics nomogram for predicting osteoporotic vertebral fractures: a longitudinal study[J/OL]. J Clin Endocrinol Metab, 2023, 108(6): e283-e294 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/36494103/. DOI: 10.1210/clinem/dgac722.
[47]
ZHANG J, XIA L, ZHANG X L, et al. Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients[J]. Eur Spine J, 2024, 33(8): 3242-3260. DOI: 10.1007/s00586-024-08235-4.
[48]
HINDE K, MAINGARD J, HIRSCH J A, et al. Mortality outcomes of vertebral augmentation (vertebroplasty and/or balloon kyphoplasty) for osteoporotic vertebral compression fractures: a systematic review and meta-analysis[J]. Radiology, 2020, 295(1): 96-103. DOI: 10.1148/radiol.2020191294.
[49]
ZHANG Y F, SUN J J, ZHANG Z, et al. Risk factors for new vertebral compression fracture after percutaneous vertebral augmentation: a retrospective study[J/OL]. Med Sci Monit, 2023, 29: e940134 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/37461206/. DOI: 10.12659/MSM.940134.
[50]
PARK S M, AHN S H, KIM H Y, et al. Incidence and mortality of subsequent vertebral fractures: analysis of claims data of the Korea National Health Insurance Service from 2007 to 2016[J]. Spine J, 2020, 20(2): 225-233. DOI: 10.1016/j.spinee.2019.09.025.
[51]
CAI J H, SHEN C, YANG T Q, et al. MRI-based radiomics assessment of the imminent new vertebral fracture after vertebral augmentation[J]. Eur Spine J, 2023, 32(11): 3892-3905. DOI: 10.1007/s00586-023-07887-y.
[52]
JIANG Y, CAI J H, ZENG Y R, et al. Development and validation of a machine learning model to predict imminent new vertebral fractures after vertebral augmentation[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 472 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/37296426/. DOI: 10.1186/s12891-023-06557-w.
[53]
JIANG Y, ZHANG W, HUANG S H, et al. Preoperative prediction of new vertebral fractures after vertebral augmentation with a radiomics nomogram[J/OL]. Diagnostics, 2023, 13(22): 3459 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/37998595/. DOI: 10.3390/diagnostics13223459.
[54]
WANG X K, YE W, GU Y, et al. Predicting secondary vertebral compression fracture after vertebral augmentation via CT-based machine learning radiomics-clinical model[J/OL]. Acad Radiol, 2024: S1076-S6332(24)00427-6. DOI: 10.1016/j.acra.2024.06.041.
[55]
ZHAN Z H, LI R, FU D M, et al. Clinical efficacy and influencing factors of percutaneous kyphoplasty for osteoporotic vertebral compression fractures: a 10-year follow-up study[J/OL]. BMC Surg, 2024, 24(1): 29 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/38238715/. DOI: 10.1186/s12893-024-02322-5.
[56]
GE C, CHEN Z, LIN Y Z, et al. Preoperative prediction of residual back pain after vertebral augmentation for osteoporotic vertebral compression fractures: initial application of a radiomics score based nomogram[J/OL]. Front Endocrinol, 2022, 13: 1093508 [2024-09-03]. https://pubmed.ncbi.nlm.nih.gov/36619583/. DOI: 10.3389/fendo.2022.1093508.

PREV Application progress of IVIM imaging technology in evaluating physiological and pathological status of skeletal muscle
NEXT
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn