Share:
Share this content in WeChat
X
Clinical Article
A study of the seed-point functional connectivity network for the default mode network in patients with mild hepatic encephalopathy
NIU Fang  ZHENG Jiarui  MA Wenfu  MA Wanlong  JIN Yixuan  SUN Meng  DING Xiangchun  WANG Xiaodong 

Cite this article as: NIU F, ZHENG J R, MA W F, et al. A study of the seed-point functional connectivity network for the default mode network in patients with mild hepatic encephalopathy[J]. Chin J Magn Reson Imaging, 2024, 15(11): 1-5, 11. DOI:10.12015/issn.1674-8034.2024.11.001.


[Abstract] Objective Resting-state functional magnetic resonance imaging (rs-fMRI) combined with seed-based functional connectivity (FC) analysis was used to investigate whether there was a difference between the default network (DMN) and the whole brain functional connectivity between patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and minimal hepatic encephalopathy (MHE) and healthy controls (HCs), in order to further explore the underlying mechanism of cognitive dysfunction in HBV-ACLF with MHE patients and HCs, and to provide imaging markers for early diagnosis of HBV-ACLF with MHE.Materials and Methods Rs-fMRI was used to observed the FC of the DMN with the whole brain in 27 patients with HBV-ACLF with MHE and 22 HCs in the resting state, and analyze the differences between the two groups, and correlation analysis was performed with Digit Symbol Test (DST), Number Connection Test A (NCT-A), Montreal Cognitive Assessment (MoCA) scores, blood ammonia and white blood cell count.Results Compared with the HCs group, the FC of the right temporal pole (middle temporal gyrus), left inferior temporal gyrus, right inferior occipital gyrus and left middle occipital gyrus was reduced in the MHE group (P<0.005), the FC value of the right temporal pole was significantly negatively correlated with the MoCA score in the MHE group (r=-0.394, P<0.05), and the FC score of the left inferior temporal gyrus in the MHE group was significantly negatively correlated with blood ammonia (r=-0.456, P<0.05).Conclusions The internal functional integration of DMN in patients with HBV-ACLF with MHE is altered, and the reduction or interruption of FC may be the pathophysiological mechanism of early cognitive decline in patients with HBV-ACLF with MHE.
[Keywords] minimal hepatic encephalopathy;magnetic resonance imaging;resting state functional connectivity;psychometric tests;default mode network;cognitive function

NIU Fang1   ZHENG Jiarui2   MA Wenfu1   MA Wanlong3   JIN Yixuan1   SUN Meng1   DING Xiangchun3   WANG Xiaodong4, 5*  

1 Clinical Medical College of Ningxia Medical University, Yinchuan750004, China

2 Department of Radiology, Yinchuan Maternal and Child Health Care Hospital (Yinchuan Children's Hospital), Yinchuan750004, China

3 Department of Infectious Diseases, the General Hospital of Ningxia Medical University, Yinchuan750004, China

4 Department of Radiology, the General Hospital of Ningxia Medical University, Yinchuan750004, China

5 Key Laboratory of Brain Diseases, the General Hospital of Ningxia Medical University, Yinchuan750004, China

Corresponding author: WANG X D, E-mail: xdw80@yeah.net

Conflicts of interest   None.

Received  2024-04-17
Accepted  2024-10-11
DOI: 10.12015/issn.1674-8034.2024.11.001
Cite this article as: NIU F, ZHENG J R, MA W F, et al. A study of the seed-point functional connectivity network for the default mode network in patients with mild hepatic encephalopathy[J]. Chin J Magn Reson Imaging, 2024, 15(11): 1-5, 11. DOI:10.12015/issn.1674-8034.2024.11.001.

[1]
RUDLER M, WEISS N, BOUZBIB C, et al. Diagnosis and management of hepatic encephalopathy[J]. Clin Liver Dis, 2021, 25(2): 393-417. DOI: 10.1016/j.cld.2021.01.008.
[2]
HANSEN M K G, KJÆRGAARD K, ERIKSEN L L, et al. Psychometric methods for diagnosing and monitoring minimal hepatic encephalopathy - current validation level and practical use[J]. Metab Brain Dis, 2022, 37(3): 589-605. DOI: 10.1007/s11011-022-00913-w.
[3]
MORAN S, LÓPEZ-SÁNCHEZ M, MILKE-GARCÍA M D P, et al. Current approach to treatment of minimal hepatic encephalopathy in patients with liver cirrhosis[J]. World J Gastroenterol, 2021, 27(22): 3050-3063. DOI: 10.3748/wjg.v27.i22.3050.
[4]
PISAREK W. Minimal hepatic encephalopathy-diagnosis and treatment[J]. Prz Gastroenterol, 2021, 16(4): 311-317. DOI: 10.5114/pg.2021.111389.
[5]
GAO Y J, SUN J, GUO X, et al. Research progress of resting-state functional magnetic resonance imaging in the auxiliary diagnosis and early prognosis of bipolar disorder[J]. Chin J Magn Reson Imaging, 2023, 14(12): 111-115. DOI: 10.12015/issn.1674-8034.2023.12.019.
[6]
BOREN S B, SAVITZ S I, ELLMORE T M, et al. Longitudinal resting-state functional magnetic resonance imaging study: A seed-based connectivity biomarker in patients with ischemic and intracerebral hemorrhage stroke[J]. Brain Connect, 2023, 13(8): 498-507. DOI: 10.1089/brain.2022.0017.
[7]
CHEN Y, YU C X. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(08): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
[8]
GAO Y, WANG M, YU R, et al. Abnormal default mode network homogeneity in treatment-naive patients with first-episode depression[J/OL]. Front Psychiatry, 2018, 9: 697 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/30618871/. DOI: 10.3389/fpsyt.2018.00697.
[9]
XIN P, XIE C, WANG L J, et al. Large-scale brain networks interactions support internal and external directed cognition[J]. Chinese Journal of Biomedical Engineering, 2020, 39(6): 736-746. DOI: 10.3969/j.issn.0258-8021.2020.06.011.
[10]
WANG H, ZENG L L, CHEN Y, et al. Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia[J/OL]. Sci Rep, 2015, 5(30): 14655 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/26419213/. DOI: 10.1038/srep14655.
[11]
ANDREWS-HANNA J R, SMALLWOOD J, SPRENG R N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance[J]. Ann N Y Acad Sci, 2014, 1316(1): 29-52. DOI: 10.1111/nyas.12360.
[12]
UDDIN L Q, KELLY A M, BISWAL B B, et al. Functional connectivity of default mode network components: correlation, anticorrelation, and causality[J]. Hum Brain Mapp, 2009, 30(2): 625-637. DOI: 10.1002/hbm.20531.
[13]
ANDREWS-HANNA J R, REIDLER J S, SEPULCRE J, et al. Functional-anatomic fractionation of the brain's default network[J]. Neuron, 2010, 65(4): 550-562. DOI: 10.1016/j.neuron.2010.02.005.
[14]
GAO Y, ZHENG J, LI Y, et al. Abnormal default-mode network homogeneity in patients with temporal lobe epilepsy[J/OL]. Medicine, 2018, 97: e11239 [2024-04-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039636/. DOI: 10.1097/md.0000000000011239.
[15]
ZHAO J, WU Y, CHEN F, et al. Distance-specific functional connectivity strength alterations in human immunodeficiency virus asymptomatic neurocognitive impairment patients: a cross-sectional study[J]. Quant Imaging Med Surg, 2024, 14(2): 1835-1843. DOI: 10.21037/qims-23-1161.
[16]
BUZI G, FORNARI C, PERINELLI A, et al. Functional connectivity changes in mild cognitive impairment: A meta-analysis of M/EEG studies[J]. Clin Neurophysiol, 2023, 156: 183-195. DOI: 10.1016/j.clinph.2023.10.011.
[17]
BUCKNER R L, DINICOLA L M. The brain's default network: updated anatomy, physiology and evolving insights[J]. Nat Rev Neurosci, 2019, 20(10): 593-608. DOI: 10.1038/s41583-019-0212-7.
[18]
ZHANG R, VOLKOW N D. Brain default-mode network dysfunction in addiction[J]. Neuroimage, 2019, 200: 313-331. DOI: 10.1016/j.neuroimage.2019.06.036.
[19]
VEERAREDDY A, FANG H, SAFARI N, et al. Cognitive empathy mediates the relationship between gray matter volume size of dorsomedial prefrontal cortex and social network size: A voxel-based morphometry study[J]. Cortex, 2023, 169: 279-289. DOI: 10.1016/j.cortex.2023.09.015.
[20]
SMALLWOOD J, BERNHARDT B C, LEECH R, et al. The default mode network in cognition: a topographical perspective[J]. Nat Rev Neurosci, 2021, 22(8): 503-513. DOI: 10.1038/s41583-021-00474-4.
[21]
HERLIN B, NAVARRO V, DUPONT S. The temporal pole: From anatomy to function-A literature appraisal[J/OL]. J Chem Neuroanat, 2021, 113: 101925 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/33582250/. DOI: 10.1016/j.jchemneu.2021.101925.
[22]
CAI L M, SHI J Y, DONG Q Y, et al. Aberrant stability of brain functional architecture in cirrhotic patients with minimal hepatic encephalopathy[J]. Brain Imaging Behav, 2022, 16(5): 2258-2267. DOI: 10.1007/s11682-022-00696-9.
[23]
ADEKANLE O, SUNMONU T A, KOMOLAFE M A, et al. Cognitive functions in patients with liver cirrhosis: assessment using community screening interview for dementia[J]. Ann Afr Med, 2012, 11(4): 222-229. DOI: 10.4103/1596-3519.102853.
[24]
WANG M, CUI J, LIU Y, et al. Structural and functional abnormalities of vision-related brain regions in cirrhotic patients: a MRI study[J]. Neuroradiology, 2019, 61(6): 695-702. DOI: 10.1007/s00234-019-02199-9.
[25]
LIN S, LI J, CHEN S, et al. Progressive disruption of dynamic functional network connectivity in patients with hepatitis B virus-related cirrhosis[J]. J Magn Reson Imaging, 2021, 54(6): 1830-1840. DOI: 10.1002/jmri.27740.
[26]
GAIRING S J, SCHLEICHER E M, KAPS L, et al. Development and evaluation of a virtual reality driving test for patients with cirrhosis[J/OL]. Hepatol Commun, 2023, 7(11): e0303 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/37902506/. DOI: 10.1097/hc9.0000000000000303.
[27]
REDFIELD R, LATT N, MUNOZ S J. Minimal hepatic encephalopathy[J]. Clin Liver Dis, 2024, 28(2): 237-252. DOI: 10.1016/j.cld.2024.01.004.
[28]
ZHANG G, CHENG Y, LIU B. Abnormalities of voxel-based whole-brain functional connectivity patterns predict the progression of hepatic encephalopathy[J]. Brain Imaging Behav, 2017, 11(3): 784-796. DOI: 10.1007/s11682-016-9553-2.
[29]
ZHANG K, ZHANG K, LIU Q, et al. The relationship between sarcopenia, cognitive impairment, and cerebral white matter hyperintensity in the elderly[J]. Clin Interv Aging, 2023, 18: 547-555. DOI: 10.2147/cia.S404734.
[30]
CASANOVA-FERRER F, GALLEGO J J, FIORILLO A, et al. Improved cognition after rifaximin treatment is associated with changes in intra- and inter-brain network functional connectivity[J/OL]. J Transl Med, 2024, 22(1): 49 [2024-04-17]. https://pubmed.ncbi.nlm.nih.gov/38217008/. DOI: 10.1186/s12967-023-04844-7.
[31]
LIU C, WANG H B, YU Y Q, et al. Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis[J]. Natl Med J China, 2016, 96(47): 3787-3792. DOI: 10.3760/cma.j.issn.0376-2491.2016.47.004.
[32]
GUEVARA M, BACCARO M E, GÓMEZ-ANSÓN B, et al. Cerebral magnetic resonance imaging reveals marked abnormalities of brain tissue density in patients with cirrhosis without overt hepatic encephalopathy[J]. J Hepatol, 2011, 55(3): 564-573. DOI: 10.1016/j.jhep.2010.12.008.

PREV
NEXT The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn