Share:
Share this content in WeChat
X
Clinical Article
The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke
ZHONG Jiali  JING Xiaoshan  LIANG Ying  PENG Ruchen  XIN Ruiqiang 

Cite this article as: ZHONG J L, JING X S, LIANG Y, et al. The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(11): 6-11. DOI:10.12015/issn.1674-8034.2024.11.002.


[Abstract] Objective To explore the application value of brain functional network topology properties in evaluating transcranial Direct Current Stimulation (tDCS) in improving cognitive impairment after ischemic stroke (IS).Materials and Methods Prospective inclusion of 51 IS patients with mild or above cognitive impairment, randomly assigned to an electrical stimulation group (26 cases) and a control group (25 cases) for 15 days of routine rehabilitation treatment, as well as tDCS treatment or sham stimulation. Collect cognitive scale scores and resting state functional magnetic resonance imaging (rs-fMRI) data from two groups of subjects before and after treatment. Constructing a brain functional network based on graph theory analysis methods, comparing the differences in global and local topological properties between two groups of subjects before and after treatment, as well as their correlation with cognitive scale scores.Results The Mini Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores of the electrical stimulation group and the control group after treatment were both better than before treatment, but the improvement in MMSE and MoCA scores of the electrical stimulation group after treatment was higher than that of the control group, with P<0.05. The global efficiency (Eg) and normalized clustering coefficient (γ) of the electrical stimulation group increased after treatment (P<0.05, FDR correction); The nodal efficiency (Enodal) of the inferior frontal gyrus in the left triangle and the nodal clustering coefficient (Cp nodal) of the superior frontal gyrus and posterior central gyrus in the left orbit increased (P<0.05, FDR correction). There was no significant difference in the global and local network topology properties between the control group after treatment. Correlation analysis found that the increase in Eg in the electrical stimulation group after treatment was positively correlated with the improvement in MMSE score (r=0.47, P=0.02).Conclusions The improvement of cognitive function in IS patients by tDCS combined with conventional rehabilitation therapy is superior to that of conventional rehabilitation therapy alone. At the same time, tDCS can have an impact on the global or local properties results of some brain functional networks, and the increase of Eg may be an effective predictor of cognitive function rehabilitation.
[Keywords] ischemic stroke;cognitive impairment;magnetic resonance imaging;resting state functional network;graph theory

ZHONG Jiali1   JING Xiaoshan2   LIANG Ying3   PENG Ruchen1   XIN Ruiqiang1*  

1 Department of Medical Imaging, Beijing Luhe Hospital, Capital Medical University, Beijing101149, China

2 Department of Rehabilitation, Beijing Luhe Hospital, Capital Medical University, Beijing101149, China

3 Department of Biomedical Engineering, Capital Medical University, Beijing100069, China

Corresponding author: XIN R Q, E-mail: rxin@ccmu.edu.cn

Conflicts of interest   None.

Received  2024-07-19
Accepted  2024-11-10
DOI: 10.12015/issn.1674-8034.2024.11.002
Cite this article as: ZHONG J L, JING X S, LIANG Y, et al. The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke[J]. Chin J Magn Reson Imaging, 2024, 15(11): 6-11. DOI:10.12015/issn.1674-8034.2024.11.002.

[1]
GU H, YANG X, WANG C, et al. Clinical characteristics, management, and in-hospital outcomes in patients with stroke or transient ischemic attack in China[J/OL]. JAMA Netw Open, 2021, 4(8): e2120745 [2024-07-01]. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2782992. DOI: 10.1001/jamanetworkopen.2021.20745.
[2]
CROFTS A, KELLY M E, GIBSON C L. Imaging functional recovery following ischemic stroke: Clinical and preclinical fMRI studies[J]. J Neuroimaging, 2020, 30(1): 5-14. DOI: 10.1111/jon.12668.
[3]
CHANG M C, PARK S W, LEE B J, et al. Relationship between recovery of motor function and neuropsychological functioning in cerebral infarction patients: the importance of social functioning in motor recovery[J]. J Integr Neurosci, 2020, 19(3): 405-411. DOI: 10.31083/j.jin.2020.03.175.
[4]
LOU X Q, LIU X, LIU C H, et al. Therapeutic effect of electric-balance stimulation with scalp acupuncture for motor aphasia after cerebral infarction[J]. Chin Acupuncture, 2021, 41(11): 1211-1215. DOI: 10.13703/j.0255-2930.20210302-k0005.
[5]
HUANG Y Y, CHEN S D, LENG X Y, et al. Post-stroke cognitive impairment: epidemiology, risk factors, and management[J]. J Alzheimers Dis, 2022, 86(3): 983-999. DOI: 10.3233/JAD-215644.
[6]
ZHANG X, BI X. Post-stroke cognitive impairment: a review focusing on molecular biomarkers[J]. J Mol Neurosci, 2020, 70(8): 1244-1254. DOI: 10.1007/s12031-020-01533-8.
[7]
CHU M, ZHANG Y, CHEN J, et al. Efficacy of intermittent theta-burst stimulation and transcranial direct current stimulation in treatment of post-stroke cognitive impairment[J/OL]. J Integr Neurosci, 2022, 21(5): 130 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/36137957/. DOI: 10.31083/j.jin2105130.
[8]
FRIDRIKSSON J, RORDEN C, ELM J, et al. Transcranial direct current stimulation vs sham stimulation to treat aphasia after stroke: a randomized clinical trial[J]. Jama Neurol, 2018, 75(12): 1470-1476. DOI: 10.1001/jamaneurol.2018.2287.
[9]
WANG Y, LIU W, CHEN J, et al. Comparative efficacy of different noninvasive brain stimulation therapies for recovery of global cognitive function, attention, memory, and executive function after stroke: a network meta-analysis of randomized controlled trials[J/OL]. Ther Adv Chronic Dis, 2023, 10(6): 20406223231168754 [2024-07-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10272674/. DOI: 10.1177/20406223231168754.
[10]
ZHANG L, ZHOU L, YE Q, et al. Impact of transcranial direct current stimulation combined with motor-cognitive intervention on post-stroke cognitive impairment[J]. Neurol Sci, 2024, 45(4): 1581-1588. DOI: 10.1007/s10072-023-07156-2.
[11]
AI Y, LIU Y, YIN M, et al. Interactions between tDCS treatment and COMT Val158Met in poststroke cognitive impairment[J]. Clin Neurophysiol, 2024, 158(2): 43-55. DOI: 10.1016/j.clinph.2023.12.011.
[12]
ZHONG J L, JING X S, LIANG Y. The application value of brain functional network topology properties in evaluating tDCS in improving cognitive impairment after ischemic stroke[J]. Chin J Magn Reson Imag, 2024, 15(2): 129-134. DOI: 10.12015/issn.1674-8034.2024.02.019.
[13]
CUI W, HUANG L, TIAN Y, et al. Effect and mechanism of mirror therapy on lower limb rehabilitation after ischemic stroke: A fMRI study[J]. NeuroRehabilitation, 2022, 51(1): 65-77. DOI: 10.3233/NRE-210307.
[14]
ALLENDORFER J B, NENERT R, NAIR S, et al. Functional magnetic resonance imaging of language following constraint-induced aphasia therapy primed with intermittent theta burst stimulation in 13 patients with post-stroke aphasia[J/OL]. Med Sci Monit, 2021, 27(5): e930100 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/33970893/. DOI: 10.12659/MSM.930100.
[15]
THOMAS J, JEZZARD P, WEBB A J. Low-frequency oscillations in the brain show differential regional associations with severity of cerebral small vessel disease: a systematic review[J/OL]. Front Neurosci, 2023, 17(8): 1254209 [2024-07-01]. https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1254209/full. DOI: 10.3389/fnins.2023.1254209.
[16]
ZHAN Y, PEI J, WANG J, et al. Motor function and fALFF modulation in convalescent-period ischemic stroke patients after scalp acupuncture therapy: a multi-centre randomized controlled trial[J]. Acupunct Med, 2023, 41(2): 86-95. DOI: 10.1177/09645284221086289.
[17]
HE F, LI Y, LI C, et al. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions[J/OL]. PloS One, 2021, 16(8): e0256100 [2024-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256100. DOI: 10.1371/journal.pone.0256100.
[18]
WEN Y, LIU B, WANG X C. Preliminary study of brain resting state functional magnetic resonance local consistency analysis in patients with mild cognitive impairment[J]. Chin J Magn Reson Imag, 2020, 11(4): 253-258. DOI: 10.12015/issn.1674-8034.2020.04.003.
[19]
DING L, SHOU G, CHA Y H, et al. Brain-wide neural co-activations in resting human[J/OL]. NeuroImage, 2022, 15(10): 119461 [2024-07-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9472753/. DOI: 10.1016/j.neuroimage.2022.119461.
[20]
GENG W, ZHANG J, SHANG S, et al. Reduced functional network connectivity is associated with upper limb dysfunction in acute ischemic brainstem stroke[J]. Brain Imaging Behav, 2022, 16(2): 802-810. DOI: 10.1007/s11682-021-00554-0.
[21]
LEE J, LEE M, KIM D S, et al. Functional reorganization and prediction of motor recovery after a stroke: A graph theoretical analysis of functional networks[J]. Restor Neurol Neuros, 2015, 33(6): 785-793. DOI: 10.3233/RNN-140467.
[22]
ZHANG J, ZHANG Y, WANG L, et al. Disrupted structural and functional connectivity networks in ischemic stroke patients[J]. Neuroscience, 2017, 19(11): 212-225. DOI: 10.1016/j.neuroscience.2017.09.009.
[23]
ALMEIDA S R, STEFANO FILHO C A, VICENTINI J, et al. Modeling functional network topology following stroke through graph theory: functional reorganization and motor recovery prediction[J/OL]. Braz J Med Biol Res, 2022, 15(8): e12036 [2024-07-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9377533/. DOI: 10.1590/1414-431X2022e12036.
[24]
JIA X, WANG Z, HUANG F, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study[J/OL]. BMC psychiatry, 2021, 21(1): 485 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/34607584/. DOI: 10.1186/s12888-021-03495-6.
[25]
KHAW J, SUBRAMANIAM P, AZIZ N A ABD, et al. Current update on the clinical utility of MMSE and MoCA for stroke patients in Asia: A systematic review[J/OL]. Int J Environ Res Public Health, 2021, 18(17): 8962 [2024-07-01]. https://pubmed.ncbi.nlm.nih.gov/34501552/. DOI: 10.3390/ijerph18178962.
[26]
WOLF T J, DOHERTY M, BOONE A, et al. Cognitive oriented strategy training augmented rehabilitation (COSTAR) for ischemic stroke: a pilot exploratory randomized controlled study[J]. Disabil Rehabil, 2021, 43(2): 201-210. DOI: 10.1080/09638288.2019.1620877.
[27]
MAGGIO M G, LATELLA D, MARESCA G, et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview[J]. J Neurosci Nurs, 2019, 51(2): 101-105. DOI: 10.1097/JNN.0000000000000423.
[28]
YUE X, LI Z, LI Y, et al. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment[J/OL]. Neurosci Lett, 2023, 16(5): 137097 [2024-07-01]. https://www.sciencedirect.com/science/article/abs/pii/S0304394023000514?via%3Dihub. DOI: 10.1016/j.neulet.2023.137097.
[29]
CARTER A R, ASTAFIEV S V, LANG C E, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke[J]. Ann Neurol, 2010, 67(3): 365-375. DOI: 10.1002/ana.21905.
[30]
WANG S, RAO B, MIAO G, et al. The resting-state topological organization damage of language-related brain regions in post-stroke cognitive impairment[J]. Brain Imaging Behav, 2022, 16(6): 2608-2617. DOI: 10.1007/s11682-022-00716-8.
[31]
VECCHIO F, CALIANDRO P, REALE G, et al. Acute cerebellar stroke and middle cerebral artery stroke exert distinctive modifications on functional cortical connectivity: A comparative study via EEG graph theory[J]. Clin Neurophysiol, 2019, 130(6): 997-1007. DOI: 10.1016/j.clinph.2019.03.017.
[32]
HEATHER HSU CC, ROLLS ET, HUANG CC, et al. Connections of the human orbitofrontal cortex and inferior frontal gyrus[J]. Cereb Cortex, 2020, 30(11): 5830-5843. DOI: 10.1093/cercor/bhaa160.
[33]
BECKER M, SOMMER T, KÜHN S. Inferior frontal gyrus involvement during search and solution in verbal creative problem solving: A parametric fMRI study[J/OL]. NeuroImage, 2020, 206(2): 116294 [2024-07-01]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7355229/. DOI: 10.1016/j.neuroimage.2019.116294.

PREV A study of the seed-point functional connectivity network for the default mode network in patients with mild hepatic encephalopathy
NEXT Assessment of Parkinson,s disease severity based on T2-weighted magnetic resonance imaging radiomic modeling
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn