Share:
Share this content in WeChat
X
Clinical Article
Study on brain microstructure in patients with white matter hyperintensities and depressive symptoms based on multimodal MRI
ZHOU Ying  ZHANG Shuo  TAN Zhongjian  LU Yikun  GAO Jinyang  HAN Xiao  MA Lifang  CUI Fangyuan 

Cite this article as: ZHOU Y, ZHANG S, TAN Z J, et al. Study on brain microstructure in patients with white matter hyperintensities and depressive symptoms based on multimodal MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 24-31. DOI:10.12015/issn.1674-8034.2024.11.005.


[Abstract] Objective To explore the changes in brain microstructure in patients with white matter hyperintensities and depression symptoms based on multimodal MRI.Materials and Methods Thirty-five patients with white matter hyperintensities and mild depression, as well as 35 healthy individuals matched by age, gender and years of education were recruited. Clinical assessments and MRI data were collected. Tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM) were used to investigate the microstructural changes of the brain between the two groups, and the correlation between the structural differences and the Hamilton Depression Scale (HAMD) score was analyzed.Results Using the statistics of no-threshold-freecluster enhancement (TFCE) for permutation test and applying (family-wise error, FEW) to correct for multiple comparisons of the study results (P<0.05). Significantly lower FA (P<0.05) values were found in areas including the body of corpus callosum, bilateral posterior thalamic radiation, the right retrolenticular part of internal capsule, and right superior longitudinal fasciculus in the experimental group were statistically significant compared to the healthy group (P<0.05); the experimental group showed a reduction in gray matter volume in brain regions such as bilateral hippocampus, right parahippocampal gyrus, anterior central gyrus, superior temporal gyrus, middle temporal gyrus, and lingual gyrus (FDR corrected, P<0.05). The FA value of the corpus callosum was negatively correlated with the volume of the right hippocampus (r=0.495, P=0.004), and significantly negatively correlated with the HAMD score (r=-0.530, P=0.002).Conclusions Patients with white matter hyperintensities and depression symptoms have extensive involvement of white matter fibers and changes in gray matter microstructure. The integrity of white matter fibers in the body of corpus callosum may be related to depressive symptom, which can provide reference for early clinical identification and intervention.
[Keywords] white matter hyperintensities;depression;cerebral microstructure;white matter;gray matter;magnetic resonance imaging;multimodal magnetic resonance imaging;diffusion tensor imaging;tract-based spatial statistics;voxel-based morphometry

ZHOU Ying1   ZHANG Shuo1   TAN Zhongjian2   LU Yikun1   GAO Jinyang1   HAN Xiao1   MA Lifang1   CUI Fangyuan1*  

1 Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing100700, China

2 Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing100700, China

Corresponding author: CUI F Y, E-mail: xmly2015@126.com

Conflicts of interest   None.

Received  2024-04-05
Accepted  2024-11-08
DOI: 10.12015/issn.1674-8034.2024.11.005
Cite this article as: ZHOU Y, ZHANG S, TAN Z J, et al. Study on brain microstructure in patients with white matter hyperintensities and depressive symptoms based on multimodal MRI[J]. Chin J Magn Reson Imaging, 2024, 15(11): 24-31. DOI:10.12015/issn.1674-8034.2024.11.005.

[1]
RUTTEN-JACOBS L C A, TOZER D J, DUERING M, et al. Genetic study of white matter integrity in UK biobank (N= 8448) and the overlap with stroke, depression, and dementia[J]. Stroke, 2018, 49(6): 1340-1347. DOI: 10.1161/STROKEAHA.118.020811.
[2]
ALBER J, ALLADI S, BAE H J, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities[J]. Alzheimers Dement (N Y). 2019, 5: 107-117. DOI: 10.1016/j.trci.2019.02.001.
[3]
QIU Y, YU L, GE X, et al. Loss of integrity of corpus callosum white matter hyperintensity penumbra predicts cognitive decline in patients with subcortical vascular mild cognitive impairment[J/OL]. Front Aging Neurosci, 2021, 13: 605900 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/33679371/. DOI: 10.3389/fnagi.2021.605900.
[4]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[5]
D'ARBELOFF T, ELLIOTT M L, KNODT A R, et al. White matter hyperintensities are common in midlife and already associated with cognitive decline[J/OL]. Brain Commun. 2019, 1(1): fcz041 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/31894208/. DOI: 10.1093/braincomms/fcz041.
[6]
VASSILAKI M, SYRJANEN J A, KRELL-ROESCH J, et al. Association of cerebrovascular imaging biomarkers, depression, and anxiety, with mild cognitive impairment[J]. J Alzheimers Dis Rep, 2023, 7(1): 1237-1246. DOI: 10.3233/ADR-230073.
[7]
XIE X, SHI Y, ZHANG J. Structural network connectivity impairment and depressive symptoms in cerebral small vessel disease[J]. J Affect Disord, 2017, 220: 8-14. DOI: 10.1016/j.jad.2017.05.039.
[8]
ROCCA M A, AGOSTA F, MEZZAPESA D M, et al. A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica[J]. Neuroimage. 2004, 21(3): 1061-1068. DOI: 10.1016/j.neuroimage.2003.10.013.
[9]
WANG Y L, CHEN W, CAI W J, et al. Associations of white matter hyperintensities with cognitive decline: A longitudinal study[J]. J Alzheimers Dis, 2020, 73(2): 759-768. DOI: 10.3233/JAD-191005.
[10]
LEEUWIS A E, WEAVER N A, BIESBROEK J M, et al. Impact of white matter hyperintensity location on depressive symptoms in memory-clinic patients: a lesion-symptom mapping study[J/OL]. J Psychiatry Neurosci, 2019, 44(4): E1-E10 [2024-04-05]. https://pmc.ncbi.nlm.nih.gov/articles/PMC6606429/. DOI: 10.1503/jpn.180136.
[11]
WOUTS L, MARIJNISSEN R M, OUDE VOSHAAR R C, et al. Strengths and weaknesses of the vascular apathy hypothesis: A narrative review[J]. Am J Geriatr Psychiatry, 2023, 31(3): 183-194. DOI: 10.1016/j.jagp.2022.09.016.
[12]
ZANINOTTO A L, GRASSI D C, DUARTE D, et al. DTI-derived parameters differ between moderate and severe traumatic brain injury and its association with psychiatric scores[J]. Neurol Sci, 2022, 43(2): 1343-1350. DOI: 10.1007/s10072-021-05455-0.
[13]
GHAZI SHERBAF F, SAME K, ASHRAF-GANJOUEI A, et al. Altered white matter microstructure associated with mild and moderate depressive symptoms in young adults, a diffusion tensor imaging study[J]. Neuroreport, 2018, 29(8): 685-689. DOI: 10.1097/WNR.0000000000001017.
[14]
GAO J, PAN P, LI J, et al. Analysis of white matter tract integrity using diffusion kurtosis imaging reveals the correlation of white matter microstructural abnormalities with cognitive impairment in type 2 diabetes mellitus[J/OL]. Front Endocrinol (Lausanne), 2024, 15: 1327339 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/38487342/. DOI: 10.3389/fendo.2024.1327339.
[15]
DOOLIN K, ANDREWS S, CARBALLEDO A, et al. Longitudinal diffusion weighted imaging of limbic regions in patients with major depressive disorder after 6 years and partial to full remission[J]. Psychiatry Res Neuroimaging, 2019, 287: 75-86. DOI: 10.1016/j.pscychresns.2019.04.004.
[16]
PIETRACUPA S, BELVISI D, PIERVINCENZI C, et al. White and gray matter alterations in de novo PD patients: which matter most?[J]. J Neurol, 2023, 270(5): 2734-2742. DOI: 10.1007/s00415-023-11607-3.
[17]
XU M, ZHANG W, HOCHWALT P, et al. Structural connectivity associated with familial risk for mental illness: A meta-analysis of diffusion tensor imaging studies in relatives of patients with severe mental disorders[J]. Hum Brain Mapp, 2022, 43(9): 2936-2950. DOI: 10.1002/hbm.25827.
[18]
ZHU Z, HUBBARD E, GUO X, et al. A connectomic analysis of deep brain stimulation for treatment-resistant depression[J]. Brain Stimul, 2021, 14(5): 1226-1233. DOI: 10.1016/j.brs.2021.08.010.
[19]
RESPINO M, JAYWANT A, KUCEYESKI A, et al. The impact of white matter hyperintensities on the structural connectome in late-life depression: relationship to executive functions[J/OL]. Neuroimage Clin, 2019, 23: 101852 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/31077981/. DOI: 10.1016/j.nicl.2019.101852.
[20]
SEILER S, FLETCHER E, HASSAN-ALI K, et al. Cerebral tract integrity relates to white matter hyperintensities, cortex volume, and cognition[J]. Neurobiol Aging, 2018, 72: 14-22. DOI: 10.1016/j.neurobiolaging.2018.08.005.
[21]
KANDILAROVA S, STOYANOV D, SIRAKOV N, et al. Reduced grey matter volume in frontal and temporal areas in depression: contributions from voxel-based morphometry study[J]. Acta Neuropsychiatr, 2019, 31(5): 252-257. DOI: 10.1017/neu.2019.20.
[22]
SUN N, LI Y, ZHANG A, et al. Fractional amplitude of low-frequency fluctuations and gray matter volume alterations in patients with bipolar depression[J/OL]. Neurosci Lett, 2020, 730: 135030 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32389612/. DOI: 10.1016/j.neulet.2020.135030.
[23]
YANG J, HUANGFU X, TONG D, et al. Regional gray matter volume mediates the relationship between neuroticism and depressed emotion[J/OL]. Front Psychol, 2022, 13: 993694 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/36275226/. DOI: 10.3389/fpsyg.2022.993694.
[24]
LI H, WANG J, LIU S, et al. Neuroanatomical correlates of mild-to-moderate depression: memory ability mediates the association between gray matter volume and antidepressant treatment outcome[J/OL]. Front Neurosci, 2022, 16: 872228 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/35431790/. DOI: 10.3389/fnins.2022.872228.
[25]
ANTONIOU G, LAMBOURG E, STEELE J D, et al. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: a systematic review and meta-analysis[J]. Br J Anaesth, 2023, 130(6): 729-746. DOI: 10.1016/j.bja.2023.03.008.
[26]
OUDEGA M L, VAN EXEL E, STEK M L, et al. The structure of the geriatric depressed brain and response to electroconvulsive therapy[J]. Psychiatry Res, 2014, 222(1-2): 1-9. DOI: 10.1016/j.pscychresns.2014.03.002.
[27]
ARGYELAN M, DENG Z D, OUSDAL O T, et al. Correction: Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression[J/OL]. Mol Psychiatry, 2024, 29(2): 543 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/38052984/. DOI: 10.1038/s41380-023-02358-8.
[28]
LEITMAN D I, LOUGHEAD J, WOLF D H, et al. Abnormal superior temporal connectivity during fear perception in schizophrenia[J]. Schizophr Bull, 2008, 34(4): 673-678. DOI: 10.1093/schbul/sbn052.
[29]
XU M, WANG Q, LI B, et al. Cerebellum and hippocampus abnormalities in patients with insomnia comorbid depression: a study on cerebral blood perfusion and functional connectivity[J/OL]. Front Neurosci, 2023, 17: 1202514 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37397441/. DOI: 10.3389/fnins.2023.1202514.
[30]
SUN S, YU H, YU R, et al. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity[J/OL]. Transl Psychiatry, 2023, 13(1): 334 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/37898626/. DOI: 10.1038/s41398-023-02625-w.
[31]
GOSWAMI S, BENIWAL RP, KUMAR M, et al. A preliminary study to investigate resting state fMRI as a potential group differentiator for schizophrenia[J/OL]. Asian J Psychiatr, 2020, 52: 102095 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/32339919/. DOI: 10.1016/j.ajp.2020.102095.
[32]
TANTIK PAK A, ŞENGÜL Y, OTCU TEMUR H, et al. Impaired integrity of commissural and association fibers in essential tremor patients: Evidence from a diffusion tensor imaging study[J]. Turk J Med Sci, 2021, 51(1): 328-334. DOI: 10.3906/sag-2004-305.
[33]
PAPEZ J W. A proposed mechanism of emotion[J]. J Neuropsychiatry Clin Neurosci, 1937, 38(4): 725-743. DOI: 10.1001/archneurpsyc.1937.02260220069003.
[34]
VANDEKERCKHOVE M, BERENS A, WANG Y L, et al. Alterations in the fronto-limbic network and corpus callosum in borderline-personality disorder[J/OL]. Brain Cogn, 2020, 138: 103596 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/31877433/. DOI: 10.1016/j.bandc.2019.103596.
[35]
YANG S R, SHANG X Y, TAO J, et al. Voxel-based analysis of fractional anisotropy in post-stroke apathy[J/OL]. PLoS One, 2015, 10(1): e116168 [2024-04-05]. https://pubmed.ncbi.nlm.nih.gov/25555189/. DOI: 10.1371/journal.pone.0116168.
[36]
BLOOM J S, HYND G W. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition?[J]. Neuropsychol Rev, 2005, 15(2): 59-71. DOI: 10.1007/s11065-005-6252-y.
[37]
HIRAO K, YAMASHITA F, KATO H, et al. Associations of depressive symptoms with white matter abnormalities and regional cerebral blood flow in patients with amnestic mild cognitive impairment[J]. Geriatr Gerontol Int, 2022, 22(10): 846-850. DOI: 10.1111/ggi.14467.
[38]
JOHANSSON L, SKOOG I, GUSTAFSON D R, et al. Midlife psychological distress associated with late-life brain atrophy and white matter lesions: a 32-year population study of women[J]. Psychosom Med, 2012, 74(2): 120-125. DOI: 10.1097/PSY.0b013e318246eb10.

PREV Structural changes in gray matter of the brain in patients with early-onset schizophrenia: A meta-analysis of voxel-based morphometry
NEXT Application of MOLLI T1 mapping quantitative technology in the assessment of pediatric brain development
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn